IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v7y2019i4p556-580_7.html
   My bibliography  Save this article

An SIR epidemic on a weighted network

Author

Listed:
  • Spricer, Kristoffer
  • Britton, Tom

Abstract

We introduce a weighted configuration model graph, where edge weights correspond to the probability of infection in an epidemic on the graph. On these graphs, we study the development of a Susceptible–Infectious–Recovered epidemic using both Reed–Frost and Markovian settings. For the special case of having two different edge types, we determine the basic reproduction numberR0, the probability of a major outbreak, and the relative final size of a major outbreak. Results are compared with those for a calibrated unweighted graph. The degree distributions are based on both theoretical constructs and empirical network data. In addition, bivariate standard normal copulas are used to model the dependence between the degrees of the two edge types, allowing for modeling the correlation between edge types over a wide range. Among the results are that the weighted graph produces much richer results than the unweighted graph. Also, while R0 always increases with increasing correlation between the two degrees, this is not necessarily true for the probability of a major outbreak nor for the relative final size of a major outbreak. When using copulas we see that these can produce results that are similar to those of the empirical degree distributions, indicating that in some cases a copula is a viable alternative to using the full empirical data.

Suggested Citation

  • Spricer, Kristoffer & Britton, Tom, 2019. "An SIR epidemic on a weighted network," Network Science, Cambridge University Press, vol. 7(4), pages 556-580, December.
  • Handle: RePEc:cup:netsci:v:7:y:2019:i:4:p:556-580_7
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124219000547/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quintino Francesco Lotito & Davide Zanella & Paolo Casari, 2021. "Realistic Aspects of Simulation Models for Fake News Epidemics over Social Networks," Future Internet, MDPI, vol. 13(3), pages 1-20, March.
    2. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:7:y:2019:i:4:p:556-580_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.