IDEAS home Printed from https://ideas.repec.org/a/cup/jfinqa/v51y2016i04p1437-1466_00.html
   My bibliography  Save this article

Estimating Beta

Author

Listed:
  • Hollstein, Fabian
  • Prokopczuk, Marcel

Abstract

We conduct a comprehensive comparison of market beta estimation techniques. We study the performance of several historical, time-series model, and option-implied estimators for estimating realized market beta. Thereby, we find the hybrid methodology of Buss and Vilkov to consistently outperform all other approaches. In addition, all other approaches, including fully implied and dynamic conditional beta, based on generalized autoregressive conditional heteroskedasticity (GARCH) models, are dominated by a simple beta estimate based on historical (co-)variances and an approach based on the Kalman filter. Our conclusions remain unchanged after performing several robustness checks.

Suggested Citation

  • Hollstein, Fabian & Prokopczuk, Marcel, 2016. "Estimating Beta," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(4), pages 1437-1466, August.
  • Handle: RePEc:cup:jfinqa:v:51:y:2016:i:04:p:1437-1466_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0022109016000508/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    2. Adrian Buss & Grigory Vilkov, 2012. "Measuring Equity Risk with Option-implied Correlations," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3113-3140.
    3. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2019. "The term structure of systematic and idiosyncratic risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(4), pages 435-460, April.
    2. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "How to Estimate Beta?," Hannover Economic Papers (HEP) dp-617, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Korn, Olaf & Kuntz, Laura-Chloé, 2015. "Low-beta investment strategies," CFR Working Papers 15-17, University of Cologne, Centre for Financial Research (CFR).
    4. Thomas Conlon & John Cotter & Ramazan Gençay, 2015. "Long-run international diversification," Working Papers 201502, Geary Institute, University College Dublin.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2020. "The Conditional Capital Asset Pricing Model Revisited: Evidence from High-Frequency Betas," Management Science, INFORMS, vol. 66(6), pages 2474-2494, June.
    2. Hollstein, Fabian, 2020. "Estimating beta: The international evidence," Journal of Banking & Finance, Elsevier, vol. 121(C).
    3. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "How to Estimate Beta?," Hannover Economic Papers (HEP) dp-617, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "Estimating beta: Forecast adjustments and the impact of stock characteristics for a broad cross-section," Journal of Financial Markets, Elsevier, vol. 44(C), pages 91-118.
    5. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    6. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    7. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    8. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    9. Lukáš Frýd, 2018. "Asymetrie během finančních krizí: asymetrická volatilita převyšuje důležitost asymetrické korelace [Asymmetry of Financial Time Series During the Financial Crisis: Asymmetric Volatility Outperforms," Politická ekonomie, Prague University of Economics and Business, vol. 2018(3), pages 302-329.
    10. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    11. Harris, Richard D.F. & Nguyen, Anh, 2013. "Long memory conditional volatility and asset allocation," International Journal of Forecasting, Elsevier, vol. 29(2), pages 258-273.
    12. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    13. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Taamouti, Abderrahim, 2019. "The information content of forward moments," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 527-541.
    14. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    15. Jeff Fleming & Chris Kirby, 2013. "Component-Driven Regime-Switching Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 263-301, March.
    16. Ho, Hwai-Chung & Tsai, Wei-Che, 2020. "Price delay and post-earnings announcement drift anomalies: The role of option-implied betas," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    17. Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, September.
    18. Cordis, Adriana S. & Kirby, Chris, 2014. "Discrete stochastic autoregressive volatility," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 160-178.
    19. Szabolcs Blazsek & Anna Downarowicz, 2013. "Forecasting hedge fund volatility: a Markov regime-switching approach," The European Journal of Finance, Taylor & Francis Journals, vol. 19(4), pages 243-275, April.
    20. Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jfinqa:v:51:y:2016:i:04:p:1437-1466_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/jfq .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.