IDEAS home Printed from https://ideas.repec.org/a/cup/jfinqa/v37y2002i01p93-115_00.html
   My bibliography  Save this article

Average Rate Claims with Emphasis on Catastrophe Loss Options

Author

Listed:
  • Bakshi, Gurdip
  • Madan, Dilip

Abstract

This article studies the valuation of options written on the average level of a Markov process. The general properties of such options are examined. We propose a closed-form characterization in which the option payoff is contingent on cumulative catastrophe losses. In our framework, the loss rate is a mean-reverting Markov process, with no continuous martingale component. The model supposes that high loss levels have lower arrival rates. We analytically derive the cumulative loss process and its characteristic function. The resulting option model is promising.

Suggested Citation

  • Bakshi, Gurdip & Madan, Dilip, 2002. "Average Rate Claims with Emphasis on Catastrophe Loss Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 93-115, March.
  • Handle: RePEc:cup:jfinqa:v:37:y:2002:i:01:p:93-115_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0022109000001368/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beer, Simone & Braun, Alexander & Marugg, Andrin, 2019. "Pricing industry loss warranties in a Lévy–Frailty framework," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 171-181.
    2. Jean-Yves Datey & Genevieve Gauthier & Jean-Guy Simonato, 2003. "The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option Prices," Multinational Finance Journal, Multinational Finance Journal, vol. 7(1-2), pages 55-82, March-Jun.
    3. J. David Cummins & Mary A. Weiss, 2009. "Convergence of Insurance and Financial Markets: Hybrid and Securitized Risk‐Transfer Solutions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 493-545, September.
    4. Don M. Chance & Eric Hillebrand & Jimmy E. Hilliard, 2008. "Pricing an Option on Revenue from an Innovation: An Application to Movie Box Office Revenue," Management Science, INFORMS, vol. 54(5), pages 1015-1028, May.
    5. Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeLi, 2010. "Pricing catastrophe options with stochastic claim arrival intensity in claim time," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 24-32, January.
    6. George L. Ye, 2008. "Asian options versus vanilla options: a boundary analysis," Journal of Risk Finance, Emerald Group Publishing, vol. 9(2), pages 188-199, February.
    7. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Papers 1610.09875, arXiv.org.
    8. Peter Carayannopoulos & Olga Kanj & M. Fabricio Perez, 2022. "Pricing dynamics in the market for catastrophe bonds," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(1), pages 172-202, January.
    9. Jarrow, Robert A., 2010. "A simple robust model for Cat bond valuation," Finance Research Letters, Elsevier, vol. 7(2), pages 72-79, June.
    10. Almeida, Caio & Vicente, José, 2009. "Identifying volatility risk premia from fixed income Asian options," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 652-661, April.
    11. Kim, Hwa-Sung & Kim, Bara & Kim, Jerim, 2014. "Pricing perpetual American CatEPut options when stock prices are correlated with catastrophe losses," Economic Modelling, Elsevier, vol. 41(C), pages 15-22.
    12. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    13. Beer, Simone & Braun, Alexander, 2022. "Market-consistent valuation of natural catastrophe risk," Journal of Banking & Finance, Elsevier, vol. 134(C).
    14. Brignone, Riccardo & Kyriakou, Ioannis & Fusai, Gianluca, 2021. "Moment-matching approximations for stochastic sums in non-Gaussian Ornstein–Uhlenbeck models," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 232-247.
    15. Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeiLi, 2008. "Pricing catastrophe options in discrete operational time," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 422-430, December.
    16. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    17. Perrakis, Stylianos & Boloorforoosh, Ali, 2013. "Valuing catastrophe derivatives under limited diversification: A stochastic dominance approach," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3157-3168.
    18. Nadarajah, Saralees & Chan, Stephen & Afuecheta, Emmanuel, 2013. "On the characteristic function for asymmetric Student t distributions," Economics Letters, Elsevier, vol. 121(2), pages 271-274.
    19. Stylianos Perrakis & Ali Boloorforoosh, 2018. "Catastrophe futures and reinsurance contracts: An incomplete markets approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 104-128, January.
    20. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    21. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    22. Lo, Chien-Ling & Lee, Jin-Ping & Yu, Min-Teh, 2013. "Valuation of insurers’ contingent capital with counterparty risk and price endogeneity," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5025-5035.
    23. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    24. Nengjiu Ju & Rui Zhong, 2006. "Fourier transformation and the pricing of average-rate derivatives," Review of Derivatives Research, Springer, vol. 9(3), pages 187-212, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jfinqa:v:37:y:2002:i:01:p:93-115_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/jfq .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.