IDEAS home Printed from https://ideas.repec.org/a/cup/jagaec/v19y1987i02p61-73_02.html
   My bibliography  Save this article

Farm Level Dynamic Analysis of Soil Conservation: An Application to the Piedmont Area of Virginia

Author

Listed:
  • Segarra, Eduardo
  • Taylor, Daniel B.

Abstract

A conceptual optimal control theory model which considers farm level decision making with respect to soil management is developed. A simplified version of the theoretical model is applied to the Piedmont area of Virginia. The model includes the productivity impacts of both soil erosion and technological progress. Both the theoretical model and its empirical application are improvements over previous efforts. Results suggest that farmers in the study area can achieve substantial reductions in soil erosion by adopting alternative farming practices.

Suggested Citation

  • Segarra, Eduardo & Taylor, Daniel B., 1987. "Farm Level Dynamic Analysis of Soil Conservation: An Application to the Piedmont Area of Virginia," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 19(2), pages 61-73, December.
  • Handle: RePEc:cup:jagaec:v:19:y:1987:i:02:p:61-73_02
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0081305200025334/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kenneth E. McConnell, 1983. "An Economic Model of Soil Conservation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(1), pages 83-89.
    2. Oscar R. Burt & Ronald G. Cummings, 1977. "Natural Resource Management, the Steady State, and Approximately Optimal Decision Rules," Land Economics, University of Wisconsin Press, vol. 53(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Issanchou, Alice & Daniel, Karine & Dupraz, Pierre & Ropars-Collet, Carole, 2018. "Soil resource and the profitability and sustainability of farms: A soil quality investment model," Working Papers 273053, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    2. Gary R. Vieth & Herath Gunatilake & Linda J. Cox, 2001. "Economics of Soil Conservation: The Upper Mahaweli Watershed of Sir Lanka," Journal of Agricultural Economics, Wiley Blackwell, vol. 52(1), pages 139-152, January.
    3. Hoag, Dana L., 1998. "The intertemporal impact of soil erosion on non-uniform soil profiles: A new direction in analyzing erosion impacts," Agricultural Systems, Elsevier, vol. 56(4), pages 415-429, April.
    4. Issanchou, Alice, 2016. "Soil resource, at the core of competitiveness and sustainability issues in agriculture: an economic approach," Working Papers 230002, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    5. Pandey, Sushil & Hardaker, J. Brian, 1995. "The role of modelling in the quest for sustainable farming systems," Agricultural Systems, Elsevier, vol. 47(4), pages 439-450.
    6. Carmen Camacho & Alexandre Cornet, 2021. "Diffusion of soil pollution in an agricultural economy. The emergence of regions, frontiers and spatial patterns," Working Papers halshs-02652191, HAL.
    7. Doole, Graeme J. & Romera, Alvaro J., 2014. "Cost-effective regulation of nonpoint emissions from pastoral agriculture: a stochastic analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(3), July.
    8. Milham, Nick, 1993. "Towards Ecological Reality in Economic Models," 1993 Conference (37th), February 9-11, 1993, Sydney, Australia 147742, Australian Agricultural and Resource Economics Society.
    9. Alice Issanchou, 2016. "Soil resource, at the core of competitiveness and sustainability issues in agriculture: an economic approach," Working Papers SMART 16-01, INRAE UMR SMART.
    10. Carmen Camacho & Alexandre Cornet, 2021. "Diffusion of soil pollution in an agricultural economy. The emergence of regions, frontiers and spatial patterns," PSE Working Papers halshs-02652191, HAL.
    11. Van Asselt, Joanna & Grogan, Kelly A., 2020. "Do Fertilizer Subsidies Improve Soil Quality: Myopic vs. Dynamic Analysis of Smallholder Farmers in Ghana," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304546, Agricultural and Applied Economics Association.
    12. Stevens, Andrew W., 2018. "Review: The economics of soil health," Food Policy, Elsevier, vol. 80(C), pages 1-9.
    13. Bunn, Julie A., 1998. "Government Policy, Wind Erosion, And Economic Viability In Semi-Arid Agriculture: The Case Of The Southern Texas High Plains," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 30(2), pages 1-13, December.
    14. Fox, Glenn & Weersink, Alfons & Sarwar, Ghulam & Duff, Scott & Deen, Bill, 1991. "Comparative Economics Of Alternative Agricultural Production Systems: A Review," Northeastern Journal of Agricultural and Resource Economics, Northeastern Agricultural and Resource Economics Association, vol. 20(1), pages 1-19, April.
    15. Ananda, Jayanath & Herath, Gamini & Chisholm, Anthony H., 2001. "Determination of yield and erosion damage functions using subjectively elicited data: application to smallholder tea in Sri Lanka," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 45(2), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Salerian, 1989. "Application of an Economic Model to Dryland Soil Salinity in Western Australia," Economics Discussion / Working Papers 89-25, The University of Western Australia, Department of Economics.
    2. Passmore, J.G. & Brown, Colin G., 1991. "Analysis Of Rangeland Degradation Using Stochastic Dynamic Programming," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 35(2), pages 1-27, August.
    3. Brausmann, Alexandra & Bretschger, Lucas, 2018. "Economic development on a finite planet with stochastic soil degradation," European Economic Review, Elsevier, vol. 108(C), pages 1-19.
    4. Batabyal, Amitrajeet A., 1995. "The Queuing Theoretic Approach To Groundwater Management," Economics Research Institute, ERI Study Papers 28349, Utah State University, Economics Department.
    5. Nadella, Karthik & Deaton, Brady & Lawley, Chad & Weersink, Alfons, 2014. "Do farmers treat rented land differently than the land they own? A fixed effects model of farmer’s decision to adopt conservation practices on owned and rented land," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170633, Agricultural and Applied Economics Association.
    6. Alice Issanchou & Karine Daniel & Pierre Dupraz & Carole Ropars-Collet, 2018. "Soil resource and the profitability and sustainability of farms: A soil quality investment model," Working Papers SMART 18-01, INRAE UMR SMART.
    7. Fleming, Patrick & Lichtenberg, Erik & Newburn, David, 2018. "Water Quality Trading Program Design with Heterogeneous Behavioral Responses," 2018 Annual Meeting, August 5-7, Washington, D.C. 274429, Agricultural and Applied Economics Association.
    8. Hoag, Dana L., 1998. "The intertemporal impact of soil erosion on non-uniform soil profiles: A new direction in analyzing erosion impacts," Agricultural Systems, Elsevier, vol. 56(4), pages 415-429, April.
    9. Eaton, Derek J.F., 1996. "The Economics of Soil Erosion: A Model of Farm Decision-Making," Discussion Papers 24134, International Institute for Environment and Development, Environmental Economics Programme.
    10. Shively, Gerald E., 2001. "Poverty, consumption risk, and soil conservation," Journal of Development Economics, Elsevier, vol. 65(2), pages 267-290, August.
    11. Crutchfield, Stephen R. & Brazee, Richard J., 1990. "An Integrated Model of Surface and Ground Water Quality," 1990 Annual meeting, August 5-8, Vancouver, Canada 271011, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Hyberg, Bengt, 1988. "Commodity Prices And Interest Rates Influence The Level Of Soil Erosion," Staff Reports 278056, United States Department of Agriculture, Economic Research Service.
    14. repec:rri:wpaper:201106 is not listed on IDEAS
    15. Gregory L. Poe & Richard M. Klemme & Shawn J. McComb & John E. Ambrosious, 1991. "Commodity Programs and the Internalization of Erosion Costs: Do They Affect Crop Rotation Decisions?," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 13(2), pages 223-235.
    16. Coxhead, Ian A., 1997. "Induced innovation and land degradation in developing country agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 41(3), pages 1-28.
    17. Shiferaw, Bekele & Holden, Stein T., 2000. "Policy instruments for sustainable land management: the case of highland smallholders in Ethiopia," Agricultural Economics, Blackwell, vol. 22(3), pages 217-232, April.
    18. Cacho, Oscar J., 1999. "Valuing Agroforestry In The Presence Of Land Degradation," Working Papers 12931, University of New England, School of Economics.
    19. Gao, Li & Zhang, Wendong & Mei, Yingdan & Sam, Abdoul G. & Song, Yu & Jin, Shuqin, 2018. "Do farmers adopt fewer conservation practices on rented land? Evidence from straw retention in China," Land Use Policy, Elsevier, vol. 79(C), pages 609-621.
    20. Harry R. Clarke, 1992. "The Supply Of Non‐Degraded Agricultural Land," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 36(1), pages 31-56, April.
    21. Lapar, Ma. Lucila A. & Pandey, Sushil, 1999. "Adoption of soil conservation: the case of the Philippine uplands," Agricultural Economics, Blackwell, vol. 21(3), pages 241-256, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jagaec:v:19:y:1987:i:02:p:61-73_02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aae .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.