IDEAS home Printed from https://ideas.repec.org/a/cup/eurrev/v20y2012i03p324-342_00.html
   My bibliography  Save this article

System Dynamics Applied to Operations and Policy Decisions

Author

Listed:
  • Hunt, J.C.R.
  • Timoshkina, Y.
  • Baudains, P. J.
  • Bishop, S.R.

Abstract

This paper reviews how concepts and techniques of system dynamics are being applied in new ways to analyse the operations and formation of artificial and societal systems and then to make decisions about them. The ideas and modelling methods to describe natural and technological systems are mostly reductionist (or ‘bottom-up’) and based on general scientific principles, with ad-hoc elements for any particular system. But very complex and large systems involving science, technology and society, whose complete descriptions and predictions are impossible, can still be designed, controlled and managed using the methods of system dynamics, where they are focused on the outputs of the system in relation to the input data available, and relevant external influences. For many complex systems with uncertain behaviour, their models typically combine concepts and methods of bottom-up system dynamics with statistical modelling of past or analogous data and optimization of outputs. System dynamics that has been generalized by advances in mathematical, scientific and technological research over the past 50 years, together with new approaches to the use of data and ICT, has led to powerful qualitative verbal and schematic concepts as well as improved quantitative methods, both of which have been shown to be of great assistance to decisions, notably about different types of uncertainty and erratic behaviour. This approach complements traditional decision-making methods, by introducing greater clarity about the process, as well as providing new techniques and general concepts for initial analysis, system description – using data in non-traditional ways – and finally analysis and prediction of the outcomes, especially in critical situations where system behaviour cannot be analysed by traditional decision-making methods. The scientific and international acceptance of system methods can make decision-making less implicit, and with fewer cultural assumptions. Topical examples of systems and decision-making are given.

Suggested Citation

  • Hunt, J.C.R. & Timoshkina, Y. & Baudains, P. J. & Bishop, S.R., 2012. "System Dynamics Applied to Operations and Policy Decisions," European Review, Cambridge University Press, vol. 20(3), pages 324-342, May.
  • Handle: RePEc:cup:eurrev:v:20:y:2012:i:03:p:324-342_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1062798711000585/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magoua, Joseph Jonathan & Li, Nan, 2023. "The human factor in the disaster resilience modeling of critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Weiwei Zhang & Thomas Huggins & Wenwen Zheng & Shiyong Liu & Zhanwei Du & Hongli Zhu & Ahmad Raza & Ahmad Hussen Tareq, 2022. "Assessing the Dynamic Outcomes of Containment Strategies against COVID-19 under Different Public Health Governance Structures: A Comparison between Pakistan and Bangladesh," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    3. Marzouk, Mohamed & Seleem, Noreihan, 2018. "Assessment of existing buildings performance using system dynamics technique," Applied Energy, Elsevier, vol. 211(C), pages 1308-1323.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:eurrev:v:20:y:2012:i:03:p:324-342_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/erw .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.