IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v37y2021i4p769-793_5.html
   My bibliography  Save this article

Finite-Sample Size Control Of Ivx-Based Tests In Predictive Regressions

Author

Listed:
  • Hosseinkouchack, Mehdi
  • Demetrescu, Matei

Abstract

In predictive regressions with variables of unknown persistence, the use of extended IV (IVX) instruments leads to asymptotically valid inference. Under highly persistent regressors, the standard normal or chi-squared limiting distributions for the usual t and Wald statistics may, however, differ markedly from the actual finite-sample distributions which exhibit in particular noncentrality. Convergence to the limiting distributions is shown to occur at a rate depending on the choice of the IVX tuning parameters and can be very slow in practice. A characterization of the leading higher-order terms of the t statistic is provided for the simple regression case, which motivates finite-sample corrections. Monte Carlo simulations confirm the usefulness of the proposed methods.

Suggested Citation

  • Hosseinkouchack, Mehdi & Demetrescu, Matei, 2021. "Finite-Sample Size Control Of Ivx-Based Tests In Predictive Regressions," Econometric Theory, Cambridge University Press, vol. 37(4), pages 769-793, August.
  • Handle: RePEc:cup:etheor:v:37:y:2021:i:4:p:769-793_5
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466620000298/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "Unified Inference for Dynamic Quantile Predictive Regression," Papers 2309.14160, arXiv.org, revised Nov 2023.
    2. Yijie Fei & Yiu Lim Lui & Jun Yu, 2024. "Testing Predictability in the Presence of Persistent Errors," Working Papers 202401, University of Macau, Faculty of Business Administration.
    3. Ke-Li Xu & Junjie Guo, 2021. "A New Test for Multiple Predictive Regression," CAEPR Working Papers 2022-001 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    4. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Extensions to IVX methods of inference for return predictability," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
    6. Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:37:y:2021:i:4:p:769-793_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.