IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v35y2019i03p601-629_00.html
   My bibliography  Save this article

Heteroskedasticity Autocorrelation Robust Inference In Time Series Regressions With Missing Data

Author

Listed:
  • Rho, Seung-Hwa
  • Vogelsang, Timothy J.

Abstract

In this article, we investigate the properties of heteroskedasticity and autocorrelation robust (HAR) test statistics in time series regression settings when observations are missing. We primarily focus on the nonrandom missing process case where we treat the missing locations to be fixed as T → ∞ by mapping the missing and observed cutoff dates into points on [0,1] based on the proportion of time periods in the sample that occur up to those cutoff dates. We consider two models, the amplitude modulated series (Parzen, 1963) regression model, which amounts to plugging in zeros for missing observations, and the equal space regression model, which simply ignores the missing observations. When the amplitude modulated series regression model is used, the fixed-b limits of the HAR test statistics depend on the locations of missing observations but are otherwise pivotal. When the equal space regression model is used, the fixed-b limits of the HAR test statistics have the standard fixed-b limits as in Kiefer and Vogelsang (2005). We discuss methods for obtaining fixed-b critical values with a focus on bootstrap methods and find the naive i.i.d. bootstrap with missing dates fixed to be an effective and practical way to obtain the fixed-b critical values.

Suggested Citation

  • Rho, Seung-Hwa & Vogelsang, Timothy J., 2019. "Heteroskedasticity Autocorrelation Robust Inference In Time Series Regressions With Missing Data," Econometric Theory, Cambridge University Press, vol. 35(3), pages 601-629, June.
  • Handle: RePEc:cup:etheor:v:35:y:2019:i:03:p:601-629_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466618000117/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulrich K. Müller & Mark W. Watson, 2021. "Spatial Correlation Robust Inference," Working Papers 2021-61, Princeton University. Economics Department..
    2. Ulrich K. Müller & Mark W. Watson, 2022. "Spatial Correlation Robust Inference," Econometrica, Econometric Society, vol. 90(6), pages 2901-2935, November.
    3. Kaicheng Chen & Timothy J. Vogelsang, 2023. "Fixed-b Asymptotics for Panel Models with Two-Way Clustering," Papers 2309.08707, arXiv.org, revised Aug 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:35:y:2019:i:03:p:601-629_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.