IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v34y2018i02p349-382_00.html
   My bibliography  Save this article

Determining The Cointegration Rank In Heteroskedastic Var Models Of Unknown Order

Author

Listed:
  • Cavaliere, Giuseppe
  • De Angelis, Luca
  • Rahbek, Anders
  • Robert Taylor, A.M.

Abstract

We investigate the asymptotic and finite sample properties of a number of methods for estimating the cointegration rank in integrated vector autoregressive systems of unknown autoregressive order driven by heteroskedastic shocks. We allow for both conditional and unconditional heteroskedasticity of a very general form. We establish the conditions required on the penalty functions such that standard information criterion-based methods, such as the Bayesian information criterion [BIC], when employed either sequentially or jointly, can be used to consistently estimate both the cointegration rank and the autoregressive lag order. In doing so we also correct errors which appear in the proofs provided for the consistency of information-based estimators in the homoskedastic case by Aznar and Salvador (2002, Econometric Theory 18, 926–947). We also extend the corpus of available large sample theory for the conventional sequential approach of Johansen (1995, Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press) and the associated wild bootstrap implementation thereof of Cavaliere, Rahbek, and Taylor (2014, Econometric Reviews 33, 606–650) to the case where the lag order is unknown. In particular, we show that these methods remain valid under heteroskedasticity and an unknown lag length provided the lag length is first chosen by a consistent method, again such as the BIC. The relative finite sample properties of the different methods discussed are investigated in a Monte Carlo simulation study. The two best performing methods in this study are a wild bootstrap implementation of the Johansen (1995, Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press) procedure implemented with BIC selection of the lag length and joint IC approach (cf. Phillips, 1996, Econometrica 64, 763–812) which uses the BIC to jointly select the lag order and the cointegration rank.

Suggested Citation

  • Cavaliere, Giuseppe & De Angelis, Luca & Rahbek, Anders & Robert Taylor, A.M., 2018. "Determining The Cointegration Rank In Heteroskedastic Var Models Of Unknown Order," Econometric Theory, Cambridge University Press, vol. 34(2), pages 349-382, April.
  • Handle: RePEc:cup:etheor:v:34:y:2018:i:02:p:349-382_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466616000335/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Motegi, Kaiji & Iitsuka, Yoshitaka, 2023. "Inter-regional dependence of J-REIT stock prices: A heteroscedasticity-robust time series approach," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    2. Gianluca Cubadda & Marco Mazzali, 2024. "The vector error correction index model: representation, estimation and identification," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 126-150.
    3. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
    4. Matteo Barigozzi & Giuseppe Cavaliere & Lorenzo Trapani, 2024. "Inference in Heavy-Tailed Nonstationary Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 565-581, January.
    5. H. Peter Boswijk & Giuseppe Cavaliere & Luca De Angelis & A. M. Robert Taylor, 2023. "Adaptive information-based methods for determining the co-integration rank in heteroskedastic VAR models," Econometric Reviews, Taylor & Francis Journals, vol. 42(9-10), pages 725-757, November.
    6. Helmut Lütkepohl & Aleksei Netšunajev, 2018. "The Relation between Monetary Policy and the Stock Market in Europe," Econometrics, MDPI, vol. 6(3), pages 1-14, August.
    7. She, Rui & Ling, Shiqing, 2020. "Inference in heavy-tailed vector error correction models," Journal of Econometrics, Elsevier, vol. 214(2), pages 433-450.
    8. Anna Pajor & Justyna Wróblewska, 2022. "Forecasting performance of Bayesian VEC-MSF models for financial data in the presence of long-run relationships," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 427-448, September.
    9. Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
    10. Guillermo Carlomagno & Antoni Espasa, 2021. "Discovering Specific Common Trends in a Large Set of Disaggregates: Statistical Procedures, their Properties and an Empirical Application," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(3), pages 641-662, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:34:y:2018:i:02:p:349-382_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.