IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v27y2011i03p609-638_00.html
   My bibliography  Save this article

Demand Analysis As An Ill-Posed Inverse Problem With Semiparametric Specification

Author

Listed:
  • Hoderlein, Stefan
  • Holzmann, Hajo

Abstract

In this paper we are concerned with analyzing the behavior of a semiparametric estimator that corrects for endogeneity in a nonparametric regression by assuming mean independence of residuals from instruments only. Because it is common in many applications, we focus on the case where endogenous regressors and additional instruments are jointly normal, conditional on exogenous regressors. This leads to a severely ill-posed inverse problem. In this setup, we show first how to test for conditional normality. More importantly, we then establish how to exploit this knowledge when constructing an estimator, and we derive the large sample behavior of such an estimator. In addition, in a Monte Carlo experiment we analyze its finite sample behavior. Our application comes from consumer demand. We obtain new and interesting findings that highlight both the advantages and the difficulties of an approach that leads to ill-posed inverse problems. Finally, we discuss the somewhat problematic relationship between endogenous nonparametric regression models and the recently emphasized issue of unobserved heterogeneity in structural models.

Suggested Citation

  • Hoderlein, Stefan & Holzmann, Hajo, 2011. "Demand Analysis As An Ill-Posed Inverse Problem With Semiparametric Specification," Econometric Theory, Cambridge University Press, vol. 27(3), pages 609-638, June.
  • Handle: RePEc:cup:etheor:v:27:y:2011:i:03:p:609-638_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466610000423/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine & Bickel, Peter J. & Stoker, Thomas M., 2001. "Goodness-of-fit tests for kernel regression with an application to option implied volatilities," Journal of Econometrics, Elsevier, vol. 105(2), pages 363-412, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yevgeniy Kovchegov & Nese Yildiz, 2014. "Orthogonal Polynomials for Seminonparametric Instrumental Variables Model," Papers 1409.1620, arXiv.org.
    2. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Centorrino Samuele & Feve Frederique & Florens Jean-Pierre, 2017. "Additive Nonparametric Instrumental Regressions: A Guide to Implementation," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-25, January.
    4. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    5. Shaw Philip & Cohen Michael Andrew & Chen Tao, 2016. "Nonparametric Instrumental Variable Estimation in Practice," Journal of Econometric Methods, De Gruyter, vol. 5(1), pages 153-177, January.
    6. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinhyun Lee, 2013. "A Consistent Nonparametric Bootstrap Test of Exogeneity," Discussion Paper Series, School of Economics and Finance 201316, School of Economics and Finance, University of St Andrews.
    2. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    3. Chen, Song Xi & Gao, Jiti & Tang, Chenghong, 2005. "A test for model specification of diffusion processes," MPRA Paper 11976, University Library of Munich, Germany, revised Feb 2007.
    4. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    5. Zhipeng Liao & Xiaoxia Shi, 2020. "A nondegenerate Vuong test and post selection confidence intervals for semi/nonparametric models," Quantitative Economics, Econometric Society, vol. 11(3), pages 983-1017, July.
    6. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    7. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    8. Wei Huang & Oliver Linton & Zheng Zhang, 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Papers 2102.08063, arXiv.org, revised Sep 2021.
    9. Hsiao, Cheng & Li, Qi & Racine, Jeffrey S., 2007. "A consistent model specification test with mixed discrete and continuous data," Journal of Econometrics, Elsevier, vol. 140(2), pages 802-826, October.
    10. Masamune Iwasawa, 2015. "A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models," Econometrics, MDPI, vol. 3(3), pages 1-31, September.
    11. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    12. Polonik, Wolfgang & Yao, Qiwei, 2008. "Testing for multivariate volatility functions using minimum volume sets and inverse regression," Journal of Econometrics, Elsevier, vol. 147(1), pages 151-162, November.
    13. Patrick Gagliardini & Diego Ronchetti, 2020. "Comparing Asset Pricing Models by the Conditional Hansen-Jagannathan Distance," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 333-394.
    14. Zambom, Adriano Zanin & Akritas, Michael G., 2017. "NonpModelCheck: An R Package for Nonparametric Lack-of-Fit Testing and Variable Selection," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i10).
    15. Lavergne, Pascal & Maistre, Samuel & Patilea, Valentin, 2014. "A Significance Test for Covariates in Nonparametric Regression," TSE Working Papers 14-502, Toulouse School of Economics (TSE).
    16. repec:wyi:journl:002074 is not listed on IDEAS
    17. Wang, Luya, 2022. "Adaptive testing using data-driven method selecting smoothing parameters," Economics Letters, Elsevier, vol. 215(C).
    18. Manzan, sebastiano & Zerom, Dawit, 2008. "A Semiparametric Analysis of Gasoline Demand in the US: Reexamining The Impact of Price," MPRA Paper 14386, University Library of Munich, Germany.
    19. Lavergne, Pascal & Patilea, Valentin, 2008. "Breaking the curse of dimensionality in nonparametric testing," Journal of Econometrics, Elsevier, vol. 143(1), pages 103-122, March.
    20. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    21. repec:wyi:journl:002142 is not listed on IDEAS
    22. Amaro de Matos, Joao & Fernandes, Marcelo, 2007. "Testing the Markov property with high frequency data," Journal of Econometrics, Elsevier, vol. 141(1), pages 44-64, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:27:y:2011:i:03:p:609-638_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.