IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v10y1994i3-4p579-595_00.html
   My bibliography  Save this article

Priors For The Ar(1) Model: Parameterization Issues and Time Series Considerations

Author

Listed:
  • Schotman, Peter C.

Abstract

Two issues have come up in the specification of a prior in the Bayesian analysis of time series with possible unit roots. The first issue deals with the singularity that is due to the local identification problem of the unconditional mean of an AR(1) process in the limit of a random walk. This singularity problem is related to the difference between a structural parameterization and the linear reduced form in a standard regression model with fixed regressors. The second is related to the time series nature of the regressor in an AR(1) model. In this paper we will concentrate on the parameterization issue. First, it is shown that the posterior of the autoregressive parameter can be very sensitive to the degree of prior dependence between the unconditional mean and the autocorrelation parameter. Second, the time series nature of the problem suggests a particular form of this dependence.

Suggested Citation

  • Schotman, Peter C., 1994. "Priors For The Ar(1) Model: Parameterization Issues and Time Series Considerations," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 579-595, August.
  • Handle: RePEc:cup:etheor:v:10:y:1994:i:3-4:p:579-595_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600008677/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleibergen, F.R. & Hoek, H., 1995. "Bayesian analysis of ARMA models using noninformative priors," Other publications TiSEM 81684a10-935f-49c4-b5ab-0, Tilburg University, School of Economics and Management.
    2. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    3. Ronald Mahieu & Peter C. Schotman, 1994. "Stochastic volatility and the distribution of exchange rate news," Discussion Paper / Institute for Empirical Macroeconomics 96, Federal Reserve Bank of Minneapolis.
    4. Schotman, Peter, 1996. "A Bayesian approach to the empirical valuation of bond options," Journal of Econometrics, Elsevier, vol. 75(1), pages 183-215, November.
    5. Marriott, John & Newbold, Paul, 2000. "The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 98(1), pages 1-25, September.
    6. Mickael Salabasis & Sune Karlsson, 2004. "Seasonality, Cycles and Unit Roots," Econometric Society 2004 Australasian Meetings 268, Econometric Society.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:10:y:1994:i:3-4:p:579-595_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.