IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v4y2009i01p7-31_00.html
   My bibliography  Save this article

Mean Square Error of Prediction in the Bornhuetter–Ferguson Claims Reserving Method

Author

Listed:
  • Alai, D. H.
  • Merz, M.
  • Wüthrich, M. V.

Abstract

The prediction of adequate claims reserves is a major subject in actuarial practice and science. Due to their simplicity, the chain ladder (CL) and Bornhuetter–Ferguson (BF) methods are the most commonly used claims reserving methods in practice. However, in contrast to the CL method, no estimator for the conditional mean square error of prediction (MSEP) of the ultimate claim has been derived in the BF method until now, and as such, this paper aims to fill that gap. This will be done in the framework of generalized linear models (GLM) using the (overdispersed) Poisson model motivation for the use of CL factor estimates in the estimation of the claims development pattern.

Suggested Citation

  • Alai, D. H. & Merz, M. & Wüthrich, M. V., 2009. "Mean Square Error of Prediction in the Bornhuetter–Ferguson Claims Reserving Method," Annals of Actuarial Science, Cambridge University Press, vol. 4(1), pages 7-31, March.
  • Handle: RePEc:cup:anacsi:v:4:y:2009:i:01:p:7-31_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499500000580/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jinlong & Wu, Xianyi & Zhou, Xian, 2016. "Asymptotic behaviors of stochastic reserving: Aggregate versus individual models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 657-666.
    2. Gigante, Patrizia & Picech, Liviana & Sigalotti, Luciano, 2013. "Claims reserving in the hierarchical generalized linear model framework," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 381-390.
    3. Karthik Sriram & Peng Shi, 2021. "Stochastic loss reserving: A new perspective from a Dirichlet model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 195-230, March.
    4. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    5. Valandis Elpidorou & Carolin Margraf & María Dolores Martínez-Miranda & Bent Nielsen, 2019. "A Likelihood Approach to Bornhuetter–Ferguson Analysis," Risks, MDPI, vol. 7(4), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:4:y:2009:i:01:p:7-31_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.