IDEAS home Printed from https://ideas.repec.org/a/cto/journl/v9y1989i1p165-189.html
   My bibliography  Save this article

The Role of Statistical Heuristics in Public Policy Analysis

Author

Listed:
  • Gregory G. Brunk

Abstract

No abstract is available for this item.

Suggested Citation

  • Gregory G. Brunk, 1989. "The Role of Statistical Heuristics in Public Policy Analysis," Cato Journal, Cato Journal, Cato Institute, vol. 9(1), pages 165-189, Spring/Su.
  • Handle: RePEc:cto:journl:v:9:y:1989:i:1:p:165-189
    as

    Download full text from publisher

    File URL: http://www.cato.org/sites/cato.org/files/serials/files/cato-journal/1989/5/cj9n1-8.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lovell, Michael C, 1983. "Data Mining," The Review of Economics and Statistics, MIT Press, vol. 65(1), pages 1-12, February.
    2. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gregory G. Brunk, 2002. "Why Do Societies Collapse?," Journal of Theoretical Politics, , vol. 14(2), pages 195-230, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caruso, Alberto & Reichlin, Lucrezia & Ricco, Giovanni, 2019. "Financial and fiscal interaction in the Euro Area crisis: This time was different," European Economic Review, Elsevier, vol. 119(C), pages 333-355.
    2. Stefan Laséen & Andrea Pescatori, 2020. "Financial stability and interest‐rate policy: A quantitative assessment of costs and benefit," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(3), pages 1246-1273, August.
    3. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    4. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    5. Neely, Christopher J. & Weller, Paul, 2000. "Predictability in International Asset Returns: A Reexamination," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 601-620, December.
    6. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    7. Sager, Michael & Taylor, Mark P., 2014. "Generating currency trading rules from the term structure of forward foreign exchange premia," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 230-250.
    8. Sylvia Kaufmann & Peter Kugler, 2008. "Does Money Matter For Inflation In The Euro Area?," Contemporary Economic Policy, Western Economic Association International, vol. 26(4), pages 590-606, October.
    9. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2011. "Forecasting large datasets with Bayesian reduced rank multivariate models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(5), pages 735-761, August.
    10. Anttonen, Jetro, 2018. "Nowcasting the Unemployment Rate in the EU with Seasonal BVAR and Google Search Data," ETLA Working Papers 62, The Research Institute of the Finnish Economy.
    11. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    12. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    13. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    14. repec:hok:dpaper:311 is not listed on IDEAS
    15. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    16. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    17. Rodney W. Strachan & Herman K. Van Dijk, 2013. "Evidence On Features Of A Dsge Business Cycle Model From Bayesian Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 54(1), pages 385-402, February.
    18. Fofana, Abdulai & Toma, Luiza & Moran, Dominic & Gunn, George J. & Stott, Alistair W., 2009. "Measuring the economic benefits and costs of Bluetongue virus outbreak and control strategies in Scotland," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51052, Agricultural Economics Society.
    19. Gondo, Rocío & Pérez, Fernando, 2018. "The Transmission of Exogenous Commodity and Oil Prices shocks to Latin America - A Panel VAR approach," Working Papers 2018-012, Banco Central de Reserva del Perú.
    20. Fabian Fink & Yves S. Schüler, 2013. "The Transmission of US Financial Stress: Evidence for Emerging Market Economies," Working Paper Series of the Department of Economics, University of Konstanz 2013-01, Department of Economics, University of Konstanz.
    21. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages C32-C61, 03.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cto:journl:v:9:y:1989:i:1:p:165-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emily Ekins (email available below). General contact details of provider: https://edirc.repec.org/data/catoous.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.