IDEAS home Printed from https://ideas.repec.org/a/col/000151/020278.html
   My bibliography  Save this article

Estimación del efecto de la segregación ocupacional por sexo en el ingreso laboral para Argentina (2016-2020)

Author

Listed:
  • Federico Favata
  • Sofía Zamparo

Abstract

El objetivo de este trabajo es estimar el efecto de la segregación ocupacional por sexo en el ingreso laboral horario promedio en Argentina, para el periodo comprendido entre el 2016 y 2020. Para ello, utilizando la Encuesta Permanente de Hogares (eph) se estimó cómo impacta la segregación por sexo, a través de la regresión cuantílica bajo variables instrumentales. Los resultados indican que un aumento de 10 puntos porcentuales en la proporción de mujeres en una ocupación determinada, el ingreso promedio horario de los trabajadores de tal ocupación disminuye en promedio 0.50 %. Adicionalmente, esta magnitud varía acorde al cuantil de la distribución salarial condicional donde se posicione.

Suggested Citation

  • Federico Favata & Sofía Zamparo, 2022. "Estimación del efecto de la segregación ocupacional por sexo en el ingreso laboral para Argentina (2016-2020)," Revista de Economía del Rosario, Universidad del Rosario, vol. 25(1), June.
  • Handle: RePEc:col:000151:020278
    as

    Download full text from publisher

    File URL: https://revistas.urosario.edu.co/index.php/economia/article/view/12129
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    2. Isaiah Andrews & Anna Mikusheva, 2016. "Conditional Inference With a Functional Nuisance Parameter," Econometrica, Econometric Society, vol. 84, pages 1571-1612, July.
    3. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    4. Ron Diris, 2017. "Don't Hold Back? The Effect of Grade Retention on Student Achievement," Education Finance and Policy, MIT Press, vol. 12(3), pages 312-341, Summer.
    5. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    6. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    7. Gernandt, Johannes & Maier, Michael & Pfeiffer, Friedhelm & Rat-Wirtzler, Julie, 2006. "Distributional effects of the high school degree in Germany," ZEW Discussion Papers 06-088, ZEW - Leibniz Centre for European Economic Research.
    8. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    9. Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Journal of Econometrics, Elsevier, vol. 240(2).
    10. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    11. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    12. Han, Sukjin, 2021. "Identification in nonparametric models for dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 132-147.
    13. Dima, Bogdan & Dincă, Marius Sorin & Spulbăr, Cristi, 2014. "Financial nexus: Efficiency and soundness in banking and capital markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 100-124.
    14. Wehby, George L. & Castilla, Eduardo E. & Lopez-Camelo, Jorge, 2010. "The impact of altitude on infant health in South America," Economics & Human Biology, Elsevier, vol. 8(2), pages 197-211, July.
    15. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    16. Kang, Changhui, 2007. "Classroom peer effects and academic achievement: Quasi-randomization evidence from South Korea," Journal of Urban Economics, Elsevier, vol. 61(3), pages 458-495, May.
    17. Akosah, Nana & Alagidede, Imhotep & Schaling, Eric, 2019. "Unfolding the monetary policy rule in Ghana: quantile-based evidence within time-frequency framework," MPRA Paper 103260, University Library of Munich, Germany, revised 01 Oct 2020.
    18. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    19. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    20. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.

    More about this item

    Keywords

    segregación; salario; regresiones cuantílicas bajo variables instrumentales;
    All these keywords.

    JEL classification:

    • J01 - Labor and Demographic Economics - - General - - - Labor Economics: General
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000151:020278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Facultad de Economía (email available below). General contact details of provider: https://edirc.repec.org/data/ferosco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.