IDEAS home Printed from https://ideas.repec.org/a/cog/urbpla/v1y2016i4p65-78.html
   My bibliography  Save this article

Assessing Threats and Conservation Status of Historical Centers of Oak Richness in California

Author

Listed:
  • Kelly Jane Easterday

    (Department of Environmental Science and Policy, University of California Berkeley, USA)

  • Patrick J McIntyre

    (Biogeographic Data Branch, California Department of Fish and Wildlife, Sacramento, USA)

  • James H Thorne

    (Department Environmental Science and Policy, University of California Davis, USA)

  • Maria J Santos

    (Copernicus Institute of Sustainable Development, Utrecht University, The Netherlands)

  • Maggi Kelly

    (Department of Environmental Science and Policy, University of California Berkeley, USA)

Abstract

Oak trees are emblematic of California landscapes, they serve as keystone cultural and ecological species and as indicators of natural biological diversity. As historically undeveloped landscapes are increasingly converted to urban environments, endemic oak woodland extent is reduced, which underscores the importance of strategic placement and reintroduction of oaks and woodland landscape for the maintenance of biodiversity and reduction of habitat fragmentation. This paper investigated the effects of human urban development on oak species in California by first modeling historical patterns of richness for eight oak tree species using historical map and plot data from the California Vegetation Type Mapping (VTM) collection. We then examined spatial intersections between hot spots of historical oak richness and modern urban and conservation lands and found that impacts from development and conservation vary by both species and richness. Our findings suggest that the impact of urban development on oaks has been small within the areas of highest oak richness but that areas of highest oak richness are also poorly conserved. Third, we argue that current policy measures are inadequate to conserve oak woodlands and suggest regions to prioritize acquisition of conservation lands as well as examine urban regions where historic centers of oak richness were lost as potential frontiers for oak reintroduction. We argue that urban planning could benefit from the adoption of historical data and modern species distribution modelling techniques primarily used in natural resources and conservation fields to better locate hot spots of species richness, understand where habitats and species have been lost historically and use this evidence as incentive to recover what was lost and preserve what still exists. This adoption of historical data and modern techniques would then serve as a paradigm shift in the way Urban Planners recognize, quantify, and use landscape history in modern built environments.

Suggested Citation

  • Kelly Jane Easterday & Patrick J McIntyre & James H Thorne & Maria J Santos & Maggi Kelly, 2016. "Assessing Threats and Conservation Status of Historical Centers of Oak Richness in California," Urban Planning, Cogitatio Press, vol. 1(4), pages 65-78.
  • Handle: RePEc:cog:urbpla:v1:y:2016:i:4:p:65-78
    DOI: 10.17645/up.v1i4.726
    as

    Download full text from publisher

    File URL: https://www.cogitatiopress.com/urbanplanning/article/view/726
    Download Restriction: no

    File URL: https://libkey.io/10.17645/up.v1i4.726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maria João Santos & Terry Watt & Stephanie Pincetl, 2014. "The Push and Pull of Land Use Policy: Reconstructing 150 Years of Development and Conservation Land Acquisition," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    2. Karen C Seto & Michail Fragkias & Burak Güneralp & Michael K Reilly, 2011. "A Meta-Analysis of Global Urban Land Expansion," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    3. Christopher J. Raxworthy & Enrique Martinez-Meyer & Ned Horning & Ronald A. Nussbaum & Gregory E. Schneider & Miguel A. Ortega-Huerta & A. Townsend Peterson, 2003. "Predicting distributions of known and unknown reptile species in Madagascar," Nature, Nature, vol. 426(6968), pages 837-841, December.
    4. James H Thorne & Maria J Santos & Jacquelyn H Bjorkman, 2013. "Regional Assessment of Urban Impacts on Landcover and Open Space Finds a Smart Urban Growth Policy Performs Little Better than Business as Usual," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
    5. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelly Jane Easterday & Patrick J McIntyre & James H Thorne & Maria J Santos & Maggi Kelly, 2016. "Assessing Threats and Conservation Status of Historical Centers of Oak Richness in California," Urban Planning, Cogitatio Press, vol. 1(4), pages 65-78.
    2. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Ke Huang & Martin Dallimer & Lindsay C. Stringer & Anlu Zhang & Ting Zhang, 2021. "Does Economic Agglomeration Lead to Efficient Rural to Urban Land Conversion? An Examination of China’s Metropolitan Area Development Strategy," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    4. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    5. Broitman, Dani & Ben-Haim, Yakov, 2022. "Forecasting residential sprawl under uncertainty: An info-gap analysis," Land Use Policy, Elsevier, vol. 120(C).
    6. Xu, Gang & Xu, Zhibang & Gu, Yanyan & Lei, Weiqian & Pan, Yupiao & Liu, Jie & Jiao, Limin, 2020. "Scaling laws in intra-urban systems and over time at the district level in Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    7. Korthals Altes, Willem K., 2019. "Planning initiative: Promoting development by the use of options in Amsterdam," Land Use Policy, Elsevier, vol. 83(C), pages 13-21.
    8. Hongyan Cai & Xinliang Xu, 2017. "Impacts of Built-Up Area Expansion in 2D and 3D on Regional Surface Temperature," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    9. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    10. Riccardo Scalenghe & Ottorino-Luca Pantani, 2019. "Connecting Existing Cemeteries Saving Good Soils (for Livings)," Sustainability, MDPI, vol. 12(1), pages 1-13, December.
    11. Olexiy Kyrychenko, 2021. "Environmental Regulations, Air Pollution, and Infant Mortality in India: A Reexamination," CERGE-EI Working Papers wp703, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    12. Charlotte Shade & Peleg Kremer, 2019. "Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies," Land, MDPI, vol. 8(2), pages 1-19, February.
    13. Natalia Levashova & Alla Sidorova & Anna Semina & Mingkang Ni, 2019. "A Spatio-Temporal Autowave Model of Shanghai Territory Development," Sustainability, MDPI, vol. 11(13), pages 1-13, July.
    14. Duque-Lazo, J. & van Gils, H. & Groen, T.A. & Navarro-Cerrillo, R.M., 2016. "Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia," Ecological Modelling, Elsevier, vol. 320(C), pages 62-70.
    15. Shu, Cheng & Xie, Hualin & Jiang, Jinfa & Chen, Qianru, 2018. "Is Urban Land Development Driven by Economic Development or Fiscal Revenue Stimuli in China?," Land Use Policy, Elsevier, vol. 77(C), pages 107-115.
    16. Lourdes Diaz Olvera & Didier Plat & Pascal Pochet, 2020. "Looking for the obvious: motorcycle taxi services in Sub-Saharan African cities," Post-Print halshs-02182855, HAL.
    17. Ochoa-Ochoa, Leticia M. & Flores-Villela, Oscar A. & Bezaury-Creel, Juan E., 2016. "Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks," Ecological Modelling, Elsevier, vol. 320(C), pages 372-382.
    18. Shilpi Mittal & Jayprakash Chadchan & Sudipta K. Mishra, 2020. "Review of Concepts, Tools and Indices for the Assessment of Urban Quality of Life," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(1), pages 187-214, May.
    19. Silva, Daniel P. & Gonzalez, Victor H. & Melo, Gabriel A.R. & Lucia, Mariano & Alvarez, Leopoldo J. & De Marco, Paulo, 2014. "Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America," Ecological Modelling, Elsevier, vol. 273(C), pages 200-209.
    20. Su Wu & Neema Simon Sumari & Ting Dong & Gang Xu & Yanfang Liu, 2021. "Characterizing Urban Expansion Combining Concentric-Ring and Grid-Based Analysis for Latin American Cities," Land, MDPI, vol. 10(5), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cog:urbpla:v1:y:2016:i:4:p:65-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: António Vieira or IT Department (email available below). General contact details of provider: https://www.cogitatiopress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.