IDEAS home Printed from https://ideas.repec.org/a/ces/ifodre/v20y2013i05p22-32.html
   My bibliography  Save this article

Effizienzunterschiede und deren Ursachen im ambulanten Pflegesektor in Deutschland

Author

Listed:
  • Thomas Topf

Abstract

Bis zum Jahr 2020 wird im ambulanten Pflegesektor ein Nachfrageüberhang im Umfang von 25.000 Vollzeitbeschäftigten erwartet. Ziel dieses Beitrags ist es, Effizienzpotenziale beim Personaleinsatz im ambulanten Pflegesektor mithilfe einer Data Envelopment Analyse zu identifizieren. Die Ergebnisse zeigen, dass es zwischen den Pflegediensten substanzielle Unterschiede gibt. Ein deutschlandweit ermittelter durchschnittlicher Effizienzwert der Pflegedienste von 62,2 % bedeutet, dass es ambulante Dienste gibt, die die gleiche Anzahl an Pflegebedürftigen versorgen können wie der Durchschnitt, dafür aber nur 62,2 % des Personals eines Durchschnittsdienstes benötigen. Rechnerisch ergibt sich dadurch ein Effizienzpotenzial von ca. 100.000 Beschäftigten. Substantielle Effizienzunterschiede können auf die Wettbewerbssituation, die Trägerform sowie Größe und Lage bzw. Standort eines ambulanten Pflegedienstes zurückgeführt werden.

Suggested Citation

  • Thomas Topf, 2013. "Effizienzunterschiede und deren Ursachen im ambulanten Pflegesektor in Deutschland," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 20(05), pages 22-32, October.
  • Handle: RePEc:ces:ifodre:v:20:y:2013:i:05:p:22-32
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/ifoDD_13-05_22-32.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Banker, Rajiv D. & Chang, Hsihui, 2006. "The super-efficiency procedure for outlier identification, not for ranking efficient units," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1311-1320, December.
    2. Rajiv D. Banker & Ram Natarajan, 2008. "Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis," Operations Research, INFORMS, vol. 56(1), pages 48-58, February.
    3. Augurzky, Boris & Krolop, Sebastian & Mennicken, Roman & Schmidt, Hartmut & Schmitz, Hendrik & Terkatz, Stefan, 2011. "Pflegeheim Rating Report 2011: Boom ohne Arbeitskräfte?," RWI Materialien 68, RWI - Leibniz-Institut für Wirtschaftsforschung.
    4. Hoff, Ayoe, 2007. "Second stage DEA: Comparison of approaches for modelling the DEA score," European Journal of Operational Research, Elsevier, vol. 181(1), pages 425-435, August.
    5. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Weiß & Susanne Sünderkamp & Heinz Rothgang, 2014. "Strukturelle Einflüsse auf die Pflegenoten: eine Analyse nach Anbietergröße, Trägerschaft und regionaler Lage," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 83(4), pages 87-105.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afsharian, Mohsen & Kamali, Sara & Ahn, Heinz & Bogetoft, Peter, 2024. "Individualized second stage corrections in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 317(2), pages 563-577.
    2. Ana Paula Barreira & Carla Amado & Sérgio Santos & Jorge Andraz & Maria Helena Guimarães, 2021. "Assessment and Determinants of the Quality of Life in Portuguese Cities," International Regional Science Review, , vol. 44(6), pages 647-683, November.
    3. McDonald, John, 2009. "Using least squares and tobit in second stage DEA efficiency analyses," European Journal of Operational Research, Elsevier, vol. 197(2), pages 792-798, September.
    4. Johnson, Andrew L. & Kuosmanen, Timo, 2012. "One-stage and two-stage DEA estimation of the effects of contextual variables," European Journal of Operational Research, Elsevier, vol. 220(2), pages 559-570.
    5. Veronese da Silva, Aline & Costa, Marcelo Azevedo & Lopes-Ahn, Ana Lúcia, 2022. "Accounting multiple environmental variables in DEA energy transmission benchmarking modelling: The 2019 Brazilian case," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    6. Ricardo F. Díaz & Blanca Sanchez-Robles, 2020. "Non-Parametric Analysis of Efficiency: An Application to the Pharmaceutical Industry," Mathematics, MDPI, vol. 8(9), pages 1-27, September.
    7. Salas-Velasco, Manuel, 2018. "Production efficiency measurement and its determinants across OECD countries: The role of business sophistication and innovation," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 60-73.
    8. Gargi Sanati & Anup Kumar Bhandari, 2024. "Dynamics of Operational Efficiency in Credit Lending and Recovery of Stressed Assets: An Alternative Approach with Undesirable By-Products," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 365-394, June.
    9. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    10. Berger, Michael & Sommersguter-Reichmann, Margit & Czypionka, Thomas, 2020. "Determinants of soft budget constraints: how public debt affects hospital performance in Austria," LSE Research Online Documents on Economics 116865, London School of Economics and Political Science, LSE Library.
    11. Fabio Carlucci & Andrea Cirà & Paolo Coccorese, 2018. "Measuring and Explaining Airport Efficiency and Sustainability: Evidence from Italy," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    12. ANANG, Benjamin Tetteh, 2022. "Two-Stage Dea Estimation Of Technical Efficiency: Comparison Of Different Estimators," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 25(1), March.
    13. E. Gutiérrez & S. Lozano & B. Adenso-Díaz & P. González-Torre, 2015. "Efficiency assessment of container operations of shipping agents in Spanish ports," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(6), pages 591-607, August.
    14. Massimo Finocchiaro Castro & Calogero Guccio & Giacomo Pignataro & Ilde Rizzo, 2018. "Is competition able to counteract the inefficiency of corruption? The case of Italian public works," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(1), pages 55-84, March.
    15. da Silva e Souza, Geraldo & Gomes, Eliane Gonçalves, 2015. "Management of agricultural research centers in Brazil: A DEA application using a dynamic GMM approach," European Journal of Operational Research, Elsevier, vol. 240(3), pages 819-824.
    16. da Silva, Aline Veronese & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & do Carmo, Gabriela Miranda, 2019. "A close look at second stage data envelopment analysis using compound error models and the Tobit model," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 111-126.
    17. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    18. Roxani Karagiannis, 2015. "A system-of-equations two-stage DEA approach for explaining capacity utilization and technical efficiency," Annals of Operations Research, Springer, vol. 227(1), pages 25-43, April.
    19. Tsolas, Ioannis E., 2014. "Precious metal mutual fund performance appraisal using DEA modeling," Resources Policy, Elsevier, vol. 39(C), pages 54-60.
    20. Banker, Rajiv & Natarajan, Ram & Zhang, Daqun, 2019. "Two-stage estimation of the impact of contextual variables in stochastic frontier production function models using Data Envelopment Analysis: Second stage OLS versus bootstrap approaches," European Journal of Operational Research, Elsevier, vol. 278(2), pages 368-384.

    More about this item

    Keywords

    Pflegedienst; Pflegebedürftigkeit; Alternde Bevölkerung; Pflegeversicherung; Arbeitsplanung; Arbeitsbewertung; Deutschland; Effizienz;
    All these keywords.

    JEL classification:

    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • J00 - Labor and Demographic Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifodre:v:20:y:2013:i:05:p:22-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.