IDEAS home Printed from https://ideas.repec.org/a/cbu/jrnlec/y2023v1p265-271.html
   My bibliography  Save this article

Sustainable Development And Circular Economy In The Built Environment

Author

Listed:
  • CARAIMAN ADRIAN-COSMIN

    (POLITEHNICA UNIVERSITY OF TIMISOARA, TIMISOARA, ROMANIA)

  • DAN SORIN

    (POLITEHNICA UNIVERSITY OF TIMISOARA, FACULTY OF CIVIL ENGINEERING, CIVIL ENGINEERING AND SERVICES DEPARTMENT, TIMISOARA, ROMANIA)

  • PESCARI SIMON

    (POLITEHNICA UNIVERSITY OF TIMISOARA, FACULTY OF CIVIL ENGINEERING, CIVIL ENGINEERING AND SERVICES DEPARTMENT, TIMISOARA, ROMANIA)

Abstract

The considerable impact on the environment, the consumption of resources and the generation of waste from buildings is a cause for great concern and political attention. Thus, the interest in the concept of circular economy, a concept that involves slowing down, narrowing and/or closing loops for different building materials, through circular economy strategies (reuse, repair, renovation, recycling and recovery), has increased in recent years precisely to facilitate the minimization of the effect of these aspects that are still fully unresolved and come from the construction industry. At the same time, although circular economy initiatives proliferate within industry, however, the widespread approach of the circular economy is still lacking and the current development and implementation of strategies for the design and construction of buildings through the circular economy is in many cases structured. The construction and construction industry have a growing implication on the global consumption of resources (Weerasinghe et al., 2021)[10]. According to the International Energy Agency (IEA) and the United Nations Environment Programme (UNEP), buildings consume about 36% of global energy and produce about 40% of GHG (GREEN House Gas) emissions. As stated by the authors Son et al., (2011)[9] green buildings have become a kind of pennant, motto of sustainable development by achieving its three pillars: social, economic and environmental. Thus, in the opinion of the authors Weerasinghe et al., (2021)[10], quoting Kats (2010) and Zuo&Zhao (2014)[12], modern buildings are expected to be or can become green buildings only by incorporating sustainable features in the form of energy efficiency, efficient management of water, sustainable materials and resources, improving the quality of the indoor environment as well as the health and productivity of occupants. On the other hand, in another opinion, this gives the impression that green buildings are “firstly created using processes that are environmentally responsible, and secondly, green buildings are resource efficient throughout their life cycle”, aspects which broaden and complement the classic concerns of building design in terms of the economy, utility, durability and comfort, as outlined by the U.S. Environmental Protection Agency (U.S. EPA).

Suggested Citation

  • Caraiman Adrian-Cosmin & Dan Sorin & Pescari Simon, 2023. "Sustainable Development And Circular Economy In The Built Environment," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 265-271, February.
  • Handle: RePEc:cbu:jrnlec:y:2023:v:1:p:265-271
    as

    Download full text from publisher

    File URL: https://www.utgjiu.ro/revista/ec/pdf/2023-01/33_Caraiman2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zuo, Jian & Zhao, Zhen-Yu, 2014. "Green building research–current status and future agenda: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 271-281.
    2. Rizal Taufiq Fauzi & Patrick Lavoie & Luca Sorelli & Mohammad Davoud Heidari & Ben Amor, 2019. "Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uz Zaman, Qamar & Zhao, Yuhuan & Zaman, Shah & Batool, Kiran & Nasir, Rabiya, 2024. "Reviewing energy efficiency and environmental consciousness in the minerals industry Amidst digital transition: A comprehensive review," Resources Policy, Elsevier, vol. 91(C).
    2. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    3. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    4. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    5. Madad, A. & Gharagozlou, A. & Majedi, H. & Monavari, S.M., 2019. "A quantitative representation of the urban green building model, focusing on local climatic factors by utilizing monetary valuation," Ecological Economics, Elsevier, vol. 161(C), pages 61-72.
    6. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    7. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Isabel García Gutiérrez & Daniel Elduque & Carmelo Pina & Rafael Tobajas & Carlos Javierre, 2020. "Influence of the Composition on the Environmental Impact of a Casting Magnesium Alloy," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    9. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    10. Ester Foppa Pedretti & Kofi Armah Boakye-Yiadom & Elena Valentini & Alessio Ilari & Daniele Duca, 2021. "Life Cycle Assessment of Spinach Produced in Central and Southern Italy," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    11. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    12. Wang, Tao & Seo, Seongwon & Liao, Pin-Chao & Fang, Dongping, 2016. "GHG emission reduction performance of state-of-the-art green buildings: Review of two case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 484-493.
    13. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Francesco Lolli & Antonio Maria Coruzzolo & Samuele Marinello & Asia Traini & Rita Gamberini, 2022. "A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    15. David Teh & Tehmina Khan & Brian Corbitt & Chin Eang Ong, 2020. "Sustainability strategy and blockchain-enabled life cycle assessment: a focus on materials industry," Environment Systems and Decisions, Springer, vol. 40(4), pages 605-622, December.
    16. Zeug, Walther & Bezama, Alberto & Thrän, Daniela, 2020. "Towards a holistic and integrated Life Cycle Sustainability Assessment of the bioeconomy: Background on concepts, visions and measurements," UFZ Discussion Papers 7/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    17. Redouan Assadiki & Gérard Merlin & Hervé Boileau & Catherine Buhé & Fouzi Belmir, 2022. "Status and Prospects of Green Building in the Middle East and North Africa (MENA) Region with a Focus on the Moroccan Context," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    18. Malaquias Zildo António Tsambe & Cássio Florisbal de Almeida & Cássia Maria Lie Ugaya & Luiz Fernando de Abreu Cybis, 2021. "Application of Life Cycle Sustainability Assessment to Used Lubricant Oil Management in South Brazilian Region," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    19. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    20. José D. Silvestre & André M. P. Castelo & José J. B. C. Silva & Jorge M. C. L. de Brito & Manuel D. Pinheiro, 2019. "Energy Retrofitting of a Buildings’ Envelope: Assessment of the Environmental, Economic and Energy (3E) Performance of a Cork-Based Thermal Insulating Rendering Mortar," Energies, MDPI, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbu:jrnlec:y:2023:v:1:p:265-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ecobici Nicolae (email available below). General contact details of provider: https://edirc.repec.org/data/fetgjro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.