IDEAS home Printed from https://ideas.repec.org/a/cbu/jrnlec/y2019v4p39-46.html
   My bibliography  Save this article

Achieving Sustainable Development Through Hydropower– A Worldwide Approach

Author

Listed:
  • ANDREEA CIRSTEA

    (BABES-BOLYAI UNIVERSITY, FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION, CLUJ-NAPOCA, ROMANIA)

Abstract

Hydropower is a renewable energy source that is expected to ensure the transition to a cleaner and unpolluted world, together with the natural gas. Even if is one of the renewable energy sources that can be affected by persistent climate change in many regions of the world, it is still one of the most used by people in the last 2000 years. This study aims to give an overview of the present situation of hydropower and its future social, economic and innovation perspectives and challenges. In order to achieve the main purpose of the research, we used a quantitative analysis to reveal useful insights concerning the status of the current situation of hydropower sector. Also, we conducted a detailed qualitative analysis regarding the impact of economic, social and technological trends of hydropower to contribute to the enrichment of the research field. It can be concluded that hydropower is a sector on an ascending trend with major social, economic and technological implications. Despite slower capacity growth, hydropower will remain the largest source of renewable electricity generation. Its positive impact for all dimensions is beyond climate risk of the hydropower industry. There are voices which suggest that hydropower may be excluded from some “green” investment mechanisms due to its perceived carbon footprint. It will be very hard for governments and other authorities to deny the impact of hydropower sector on the road to achieve sustainable development.

Suggested Citation

  • Andreea Cirstea, 2019. "Achieving Sustainable Development Through Hydropower– A Worldwide Approach," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 39-46, August.
  • Handle: RePEc:cbu:jrnlec:y:2019:v:4:p:39-46
    as

    Download full text from publisher

    File URL: http://www.utgjiu.ro/revista/ec/pdf/2019-04/05_Cirstea1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    2. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    3. Ansar, Atif & Flyvbjerg, Bent & Budzier, Alexander & Lunn, Daniel, 2014. "Should we build more large dams? The actual costs of hydropower megaproject development," Energy Policy, Elsevier, vol. 69(C), pages 43-56.
    4. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    2. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    3. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    4. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    5. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    6. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    7. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    8. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.
    9. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    10. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    11. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    12. Wan-Lin Yong & Jerome Kueh & Yong Sze Wei & Jang-Haw Tiang, 2020. "Energy Consumption and Economic Growth Nexus in China: Autoregressive Distributed Lag (ARDL)," Journal of Public Administration and Governance, Macrothink Institute, vol. 10(2), pages 194212-1942, December.
    13. Ruqayya Ibraheem & Ismat Nasim, 2021. "Globalization, Energy Use and Environmental Degradation in Thailand," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 01-11, June.
    14. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    15. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    16. Sadeq Hooshmand Zaferani & Mehdi Jafarian & Daryoosh Vashaee & Reza Ghomashchi, 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview," Energies, MDPI, vol. 14(18), pages 1-21, September.
    17. Setterberg, Hanna & Sjöström, Emma, 2021. "Action Lab: Integrated Communications on Financial and ESG Performance in the Earnings Call," Misum Working Paper Series 2021-1, Stockholm School of Economics, Mistra Center for Sustainable Markets (Misum).
    18. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    19. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    20. Anandkumar Balasubramaniam & Anand Paul & Won-Hwa Hong & HyunCheol Seo & Jeong Hong Kim, 2017. "Comparative Analysis of Intelligent Transportation Systems for Sustainable Environment in Smart Cities," Sustainability, MDPI, vol. 9(7), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbu:jrnlec:y:2019:v:4:p:39-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ecobici Nicolae (email available below). General contact details of provider: https://edirc.repec.org/data/fetgjro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.