IDEAS home Printed from https://ideas.repec.org/a/caa/jnlswr/v14y2019i4id142-2018-swr.html
   My bibliography  Save this article

Soil water response to rainfall in a dune-interdune landscape in Horqin Sand Land, northern China

Author

Listed:
  • Xueya Zhou

    (Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng, P.R. China
    Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • Dexin Guan

    (Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • Jiabing Wu

    (Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • Fenghui Yuan

    (Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • Anzhi Wang

    (Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • Cangjie Jin

    (Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • Yushu Zhang

    (Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, P.R. China)

Abstract

Soil water dynamic is considered an important process for water resource and plantation management in Horqin Sand Land, northern China. In this study, soil water content simulated by the SWMS-2D model was used to systematically analyse soil water dynamics and explore the relationship between soil water and rainfall among micro-landforms (i.e., top, upslope, midslope, toeslope, and bottomland) and 0-200 cm soil depths during the growing season of 2013 and 2015. The results showed that soil water dynamics in 0-20 cm depths were closely linked to rainfall patterns, whereas soil water content in 20-80 cm depths illustrated a slight decline in addition to fluctuations caused by rainfall. At the top position, the soil water content in different ranges of depths (20-40 and 80-200 cm) was near the wilting point, and hence some branches, and even entire plants exhibited diebacks. At the upslope or midslope positions, the soil water content in 20-80 or 80-200 cm depths was higher than at the top position. Soil water content was higher at the toeslope and bottomland positions than at other micro-landforms, and deep caliche layers had a positive feedback effect on shrub establishment. Soil water recharge by rainfall was closely related to rainfall intensity and micro-landforms. Only rainfalls > 20 mm significantly increased water content in > 40 cm soil depths, but deeper water recharge occurred at the toeslope position. A linear equation was fitted to the relationship between soil water and antecedent rainfall, and the slopes and R2 of the equations were different among micro-landforms and soil depths. The linear equations generally fitted well in 0-20 and 20-40 cm depths at the top, upslope, midslope, and toeslope positions (R2 value of about 0.60), with soil water in 0-20 cm depths showing greater responses to rainfall (average slope of 0.189). In 20-40 cm depths, the response was larger at the toeslope position, with a slope of 0.137. In 40-80 cm depths, a good linear fit with a slope of 0.041 was only recorded at the toeslope position. This study provides a soil water basis for ecological restoration in similar regions.

Suggested Citation

  • Xueya Zhou & Dexin Guan & Jiabing Wu & Fenghui Yuan & Anzhi Wang & Cangjie Jin & Yushu Zhang, 2019. "Soil water response to rainfall in a dune-interdune landscape in Horqin Sand Land, northern China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(4), pages 229-239.
  • Handle: RePEc:caa:jnlswr:v:14:y:2019:i:4:id:142-2018-swr
    DOI: 10.17221/142/2018-SWR
    as

    Download full text from publisher

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/142/2018-SWR.html
    Download Restriction: free of charge

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/142/2018-SWR.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/142/2018-SWR?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kandelous, Maziar M. & Simunek, Jirí, 2010. "Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 97(7), pages 1070-1076, July.
    2. Xueya Zhou & Dexin Guan & Jiabing Wu & Tingting Yang & Fenghui Yuan & Ala Musa & Changjie Jin & Anzhi Wang & Yushu Zhang, 2017. "Quantitative Investigations of Water Balances of a Dune-Interdune Landscape during the Growing Season in the Horqin Sandy Land, Northeastern China," Sustainability, MDPI, vol. 9(6), pages 1-13, June.
    3. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    2. Chen, Rui & Wang, Zhenhua & Dhital, Yam Prasad & Zhang, Xinyu, 2022. "A comparative evaluation of soil preferential flow of mulched drip irrigation cotton field in Xinjiang based on dyed image variability versus fractal characteristic parameter," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    4. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    5. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    6. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    7. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    8. Saefuddin, Reskiana & Saito, Hirotaka & Šimůnek, Jiří, 2019. "Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation," Agricultural Water Management, Elsevier, vol. 211(C), pages 111-122.
    9. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    10. Kisi, Ozgur & Khosravinia, Payam & Heddam, Salim & Karimi, Bakhtiar & Karimi, Nazir, 2021. "Modeling wetting front redistribution of drip irrigation systems using a new machine learning method: Adaptive neuro- fuzzy system improved by hybrid particle swarm optimization – Gravity search algor," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Fu, Qiang & Hou, Renjie & Li, Tianxiao & Li, Yue & Liu, Dong & Li, Mo, 2019. "A new infiltration model for simulating soil water movement in canal irrigation under laboratory conditions," Agricultural Water Management, Elsevier, vol. 213(C), pages 433-444.
    12. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    13. Baiamonte, Giorgio & Alagna, Vincenzo & Autovino, Dario & Iovino, Massimo & Palermo, Samuel & Vaccaro, Girolamo & Bagarello, Vincenzo, 2024. "Influence of soil hydraulic parameters on bulb size for surface and buried emitters," Agricultural Water Management, Elsevier, vol. 295(C).
    14. Bai, Yu & Gao, Jinhua, 2021. "Optimization of the nitrogen fertilizer schedule of maize under drip irrigation in Jilin, China, based on DSSAT and GA," Agricultural Water Management, Elsevier, vol. 244(C).
    15. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
    16. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    17. Ruofan Li & Juanjuan Ma & Xihuan Sun & Xianghong Guo & Lijian Zheng, 2021. "Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns," Agriculture, MDPI, vol. 11(11), pages 1-20, November.
    18. Qi, Wei & Zhang, Zhanyu & Wang, Ce & Huang, Mingyi, 2021. "Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    19. Wang, Ce & Ye, Jinyang & Zhai, Yaming & Kurexi, Wuerkaixi & Xing, Dong & Feng, Genxiang & Zhang, Qun & Zhang, Zhanyu, 2023. "Dynamics of Moistube discharge, soil-water redistribution and wetting morphology in response to regulated working pressure heads," Agricultural Water Management, Elsevier, vol. 282(C).
    20. Wang, Jian & Tian, Zuokun & Yang, Ting & Li, Xuechun & He, Qiu & Wang, Duo & Chen, Rui, 2024. "Characteristics of limited flow and soil water infiltration boundary of a subsurface drip irrigation emitter in silty loam soil," Agricultural Water Management, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:14:y:2019:i:4:id:142-2018-swr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.