IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v69y2023i1id19-2022-rae.html
   My bibliography  Save this article

Estimation of corn coefficients with vegetation indices using multispectral camera and drone

Author

Listed:
  • Christos Dimitrios Papanikolaou

    (Department of Agriculture, Crop Science and Rural Environment, Laboratory of Agricultural Hydraulics, University of Thessaly, Volos, Greece)

  • Maria Andreas Sakellariou-Makrantonaki

    (Department of Agriculture, Crop Science and Rural Environment, Laboratory of Agricultural Hydraulics, University of Thessaly, Volos, Greece)

Abstract

Optimum irrigation scheduling and new technologies are the key to the successful practice of modern agriculture and natural resources, such as water management. Α three-year research project was conducted at Velestino, Magnesia, Greece. The aim was to study whether vegetation indices can be used to estimate the crop coefficients of corn in order to apply an intelligent method of irrigation using drones in the future. The normalised difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI), the renormalised difference vegetation index (RDVI) and a new index [difference infrared - green vegetation index (DIGVI)] were calculated using multispectral photos from a camera adapted to a drone. Three different methods were applied to calculate the crop coefficients: (i) the water balance and the FAO Penman-Monteith reference evapotranspiration, (ii) the climatic data, (iii) the vegetation indices. The irrigation dose covered 100% of the crop water needs according to the soil moisture measurements and the single crop coefficient values. The statistical analysis and the simple linear regression method showed that the corn crop coefficients can be estimated when these indices are used as independent variables.

Suggested Citation

  • Christos Dimitrios Papanikolaou & Maria Andreas Sakellariou-Makrantonaki, 2023. "Estimation of corn coefficients with vegetation indices using multispectral camera and drone," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 69(1), pages 36-47.
  • Handle: RePEc:caa:jnlrae:v:69:y:2023:i:1:id:19-2022-rae
    DOI: 10.17221/19/2022-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/19/2022-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/19/2022-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/19/2022-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ko, Jonghan & Piccinni, Giovanni & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat," Agricultural Water Management, Elsevier, vol. 96(12), pages 1691-1697, December.
    2. Droogers, P. & Immerzeel, W.W. & Lorite, I.J., 2010. "Estimating actual irrigation application by remotely sensed evapotranspiration observations," Agricultural Water Management, Elsevier, vol. 97(9), pages 1351-1359, September.
    3. Piccinni, Giovanni & Ko, Jonghan & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum," Agricultural Water Management, Elsevier, vol. 96(12), pages 1698-1704, December.
    4. Hou, Lizhu & Wenninger, Jochen & Shen, Jiangen & Zhou, Yangxiao & Bao, Han & Liu, Haijun, 2014. "Assessing crop coefficients for Zea mays in the semi-arid Hailiutu River catchment, northwest China," Agricultural Water Management, Elsevier, vol. 140(C), pages 37-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    3. Paulo Vinicius Demeneck Vieira & Paulo Sérgio Lourenço de Freitas & Roberto Rezende & Rivanildo Dallacort & João Danilo Barbieri & Diego Fernando Daniel, 2024. "Calibration and Simulation of the CERES-Sorghum and CERES-Maize Models for Crops in the Central-West Region of Paraná State," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 11(18), pages 140-140, April.
    4. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    5. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    6. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    7. Wang, Yunfei & Cai, Huanjie & Yu, Lianyu & Peng, Xiongbiao & Xu, Jiatun & Wang, Xiaowen, 2020. "Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime," Agricultural Water Management, Elsevier, vol. 236(C).
    8. Schwartz, Robert C. & Domínguez, Alfonso & Pardo, José J. & Colaizzi, Paul D. & Baumhardt, R. Louis & Bell, Jourdan M., 2020. "A crop coefficient –based water use model with non-uniform root distribution," Agricultural Water Management, Elsevier, vol. 228(C).
    9. Mhawej, Mario & Nasrallah, Ali & Abunnasr, Yaser & Fadel, Ali & Faour, Ghaleb, 2021. "Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Meysam ABEDINPOUR, 2015. "Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(2), pages 99-104.
    11. Facchi, A. & Gharsallah, O. & Corbari, C. & Masseroni, D. & Mancini, M. & Gandolfi, C., 2013. "Determination of maize crop coefficients in humid climate regime using the eddy covariance technique," Agricultural Water Management, Elsevier, vol. 130(C), pages 131-141.
    12. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    13. Kumar, Vipan & Udeigwe, Theophilus K. & Clawson, Ernest L. & Rohli, Robert V. & Miller, Donnie K., 2015. "Crop water use and stage-specific crop coefficients for irrigated cotton in the mid-south, United States," Agricultural Water Management, Elsevier, vol. 156(C), pages 63-69.
    14. Raphael, O.D. & Ogedengbe, K. & Fasinmirin, J.T. & Okunade, D. & Akande, I. & Gbadamosi, A., 2018. "Growth-stage-specific crop coefficient and consumptive use of Capsicum chinense using hydraulic weighing lysimeter," Agricultural Water Management, Elsevier, vol. 203(C), pages 179-185.
    15. Irmak, Suat & Kukal, Meetpal S., 2019. "Disk-till vs. no-till maize grass- and alfalfa-reference single (average) and basal (dual) crop coefficients," Agricultural Water Management, Elsevier, vol. 226(C).
    16. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    17. Gloaguen, Romain M. & Rowland, Diane L. & Brym, Zachary T. & Wilson, Chris. H. & Chun, Hyen Chung & Langham, Ray, 2021. "A METHOD FOR DEVELOPING IRRIGATION DECISION SUPPORT SYSTEMS de novo: EXAMPLE OF SESAME (Sesamum indicum L.) A KNOWN DROUGHT TOLERANT SPECIES," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Danny Harel & Myron Sofer & Moshe Broner & Dovi Zohar & Shelly Gantz, 2014. "Growth-Stage-Specific Kc of Greenhouse Tomato Plants Grown in Semi-Arid Mediterranean Region," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 6(11), pages 132-132, October.
    19. Campi, P. & Palumbo, A.D. & Mastrorilli, M., 2012. "Evapotranspiration estimation of crops protected by windbreak in a Mediterranean region," Agricultural Water Management, Elsevier, vol. 104(C), pages 153-162.
    20. Xu, Gaoping & Xue, Xuzhang & Wang, Pu & Yang, Zhaoshun & Yuan, Wenya & Liu, Xiufeng & Lou, Chenjun, 2018. "A lysimeter study for the effects of different canopy sizes on evapotranspiration and crop coefficient of summer maize," Agricultural Water Management, Elsevier, vol. 208(C), pages 1-6.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:69:y:2023:i:1:id:19-2022-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.