IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v70y2024i4id414-2023-pse.html
   My bibliography  Save this article

The effects of biochar grain size on radish plants under low water availability

Author

Listed:
  • Lenka Botyanszká

    (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)

  • Justína Vitková

    (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)

  • Natália Botková

    (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic
    Institute of Landscape Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovak Republic)

  • Lucia Toková

    (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)

  • Ján Gaduš

    (Institute of Environmental Management, Faculty of European Studies and Regional Development, Slovak University of Agriculture, Nitra, Slovak Republic)

Abstract

Low water availability is a significant constraint on global crop production. Exploration is needed regarding plant responses to drought in interaction with biochar, encompassing optimised water use and carbon allocation strategies. The size of the biochar particles also plays an important role, especially in influencing the dynamics of water and plant growth. This study explored the potential impact of biochar treatment on radish growth and drought tolerance. Finer biochar particles lead to the most substantial available water content for plants, increasing at around 30%, while medium and larger fractions increase by about 22% and 16%, respectively, compared to control soil. The chlorophyll fluorescence technique showed improved water management of drought stress at larger fractions of biochar. Our research underscores the potential of biochar treatments for environmental stresses and water scarcity in modern agriculture.

Suggested Citation

  • Lenka Botyanszká & Justína Vitková & Natália Botková & Lucia Toková & Ján Gaduš, 2024. "The effects of biochar grain size on radish plants under low water availability," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(4), pages 203-209.
  • Handle: RePEc:caa:jnlpse:v:70:y:2024:i:4:id:414-2023-pse
    DOI: 10.17221/414/2023-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/414/2023-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/414/2023-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/414/2023-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zakaria M. Solaiman & Muhammad Izhar Shafi & Euan Beamont & Hossain M. Anawar, 2020. "Poultry Litter Biochar Increases Mycorrhizal Colonisation, Soil Fertility and Cucumber Yield in a Fertigation System on Sandy Soil," Agriculture, MDPI, vol. 10(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaming Zhao & Xiangjun Wang & Guangwei Yao & Zhizhong Lin & Laiyuan Xu & Yunli Jiang & Zewen Jin & Shengdao Shan & Lifeng Ping, 2022. "Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    2. Samar Hadroug & Salah Jellali & Mejdi Jeguirim & Marzena Kwapinska & Helmi Hamdi & James J. Leahy & Witold Kwapinski, 2021. "Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    3. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Syaharudin Zaibon & Mehnaz Mosharrof, 2021. "Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    4. Mehnaz Mosharrof & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Shamim Mia & Shordar M. Shamsuzzaman & Ahmad Numery Ashfaqul Haque, 2021. "Combined Application of Rice Husk Biochar and Lime Increases Phosphorus Availability and Maize Yield in an Acidic Soil," Agriculture, MDPI, vol. 11(8), pages 1-21, August.
    5. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    6. Hanuman Singh Jatav & Vishnu D. Rajput & Tatiana Minkina & Satish Kumar Singh & Sukirtee Chejara & Andrey Gorovtsov & Anatoly Barakhov & Tatiana Bauer & Svetlana Sushkova & Saglara Mandzhieva & Marina, 2021. "Sustainable Approach and Safe Use of Biochar and Its Possible Consequences," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    7. Mehnaz Mosharrof & Md. Kamal Uddin & Shamim Mia & Muhammad Firdaus Sulaiman & Shordar M. Shamsuzzaman & Ahmad Numery Ashfaqul Haque, 2022. "Influence of Rice Husk Biochar and Lime in Reducing Phosphorus Application Rate in Acid Soil: A Field Trial with Maize," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    8. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Mehnaz Mosharrof, 2021. "Biochar with Alternate Wetting and Drying Irrigation: A Potential Technique for Paddy Soil Management," Agriculture, MDPI, vol. 11(4), pages 1-35, April.
    9. Danielle L. Gelardi & Sanjai J. Parikh, 2021. "Soils and Beyond: Optimizing Sustainability Opportunities for Biochar," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    10. Feifei Pan & Sha Pan & Jiao Tang & Jingping Yuan & Huaixia Zhang & Bihua Chen, 2022. "Fertilization Practices: Optimization in Greenhouse Vegetable Cultivation with Different Planting Years," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    11. Mehnaz Mosharrof & Md. Kamal Uddin & Shamshuddin Jusop & Muhammad Firdaus Sulaiman & S. M. Shamsuzzaman & Ahmad Numery Ashfaqul Haque, 2021. "Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments," Agriculture, MDPI, vol. 11(3), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:70:y:2024:i:4:id:414-2023-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.