IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v66y2020i11id316-2020-pse.html
   My bibliography  Save this article

Furrow-ridge mulching managements affect the yield, tuber quality and storage of continuous cropping potatoes

Author

Listed:
  • Yichen Kang

    (College of Horticulture, Gansu Agricultural University, Lanzhou, P.R. China
    Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Lanzhou, P.R. China)

  • Weina Zhang

    (College of Horticulture, Gansu Agricultural University, Lanzhou, P.R. China)

  • Xinyu Yang

    (College of Horticulture, Gansu Agricultural University, Lanzhou, P.R. China)

  • Yuhui Liu

    (Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Lanzhou, P.R. China)

  • Yanling Fan

    (College of Horticulture, Gansu Agricultural University, Lanzhou, P.R. China)

  • Mingfu Shi

    (College of Horticulture, Gansu Agricultural University, Lanzhou, P.R. China
    Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Lanzhou, P.R. China)

  • Kai Yao

    (College of Horticulture, Gansu Agricultural University, Lanzhou, P.R. China)

  • Shuhao Qin

    (College of Horticulture, Gansu Agricultural University, Lanzhou, P.R. China
    Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Lanzhou, P.R. China)

Abstract

The effect of FP (a flat plot without mulch), FPM (a flat plot with film mulching), RM (on-ridge planting with full film mulching), and FM (on-furrow planting with full film mulching) on the tuber and its storage quality of continuous cropping potatoes was investigated. The results showed that with the increase of continuous cropping years, the potato yield was reduced year by year. The furrow-ridge mulching film can significantly increase potato yield and reduce small tubers. Among them, the yield of RM was the highest. From the perspective of tuber quality, RM had the highest dry matter content and starch content, while FP had the lowest. Meanwhile, the reducing sugar content of FP was always higher than that of other treatments. The amino acid content and vitamin C content of FPM, RM, and FM were higher than FP before and after storage. In addition, with the extension of storage time, the dry matter content, starch content, amino acid content, and vitamin C content of all treatments decreased, while the content of reducing sugar increased significantly. Thus, on-ridge planting with full film mulching (RM) can effectively improve potato yield and tuber quality before and after storage.

Suggested Citation

  • Yichen Kang & Weina Zhang & Xinyu Yang & Yuhui Liu & Yanling Fan & Mingfu Shi & Kai Yao & Shuhao Qin, 2020. "Furrow-ridge mulching managements affect the yield, tuber quality and storage of continuous cropping potatoes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(11), pages 576-583.
  • Handle: RePEc:caa:jnlpse:v:66:y:2020:i:11:id:316-2020-pse
    DOI: 10.17221/316/2020-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/316/2020-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/316/2020-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/316/2020-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Shuhao & Zhang, Junlian & Dai, Hailin & Wang, Di & Li, Deming, 2014. "Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area," Agricultural Water Management, Elsevier, vol. 131(C), pages 87-94.
    2. Wang, Xiao-Ling & Li, Feng-Min & Jia, Yu & Shi, Wen-Quan, 2005. "Increasing potato yields with additional water and increased soil temperature," Agricultural Water Management, Elsevier, vol. 78(3), pages 181-194, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Qianmin & Sun, Lefeng & Ali, Shahzad & Zhang, Yan & Liu, Donghua & Kamran, Muhammad & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong, 2018. "Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 202(C), pages 19-32.
    2. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    3. Mukherjee, A. & Kundu, M. & Sarkar, S., 2010. "Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 182-189, December.
    4. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    5. Fan, Tinglu & Wang, Shuying & Li, Yongping & Yang, Xiaomei & Li, Shangzhong & Ma, Mingsheng, 2019. "Film mulched furrow-ridge water harvesting planting improves agronomic productivity and water use efficiency in Rainfed Areas," Agricultural Water Management, Elsevier, vol. 217(C), pages 1-10.
    6. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Gao, Xuhua & Xie, Dong & Yang, Chong, 2021. "Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on crop and soil environment," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Jiansheng Ye & Changan Liu, 2012. "Suitability of Mulch and Ridge-furrow Techniques for Maize across the Precipitation Gradient on the Chinese Loess Plateau," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(10), pages 182-182, August.
    9. He, Xue-Feng & Cao, Huhua & Li, Feng-Min, 2007. "Econometric analysis of the determinants of adoption of rainwater harvesting and supplementary irrigation technology (RHSIT) in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 89(3), pages 243-250, May.
    10. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    11. Zhao, Hong & Xiong, You-Cai & Li, Feng-Min & Wang, Run-Yuan & Qiang, Sheng-Cai & Yao, Tao-Feng & Mo, Fei, 2012. "Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem," Agricultural Water Management, Elsevier, vol. 104(C), pages 68-78.
    12. Ning Wang & Yingying Xing & Xiukang Wang, 2019. "Exploring Options for Improving Potato Productivity through Reducing Crop Yield Gap in Loess Plateau of China Based on Grey Correlation Analysis," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    13. Chen, Yuzhang & Chai, Shouxi & Tian, Huihui & Chai, Yuwei & Li, Yawei & Chang, Lei & Cheng, Hongbo, 2019. "Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area," Agricultural Water Management, Elsevier, vol. 211(C), pages 142-151.
    14. Sun, Mengyuan & Chen, Wen & Lapen, David R. & Ma, Bin & Lu, Peina & Liu, Jinghui, 2023. "Effects of ridge-furrow with plastic film mulching combining with various urea types on water productivity and yield of potato in a dryland farming system," Agricultural Water Management, Elsevier, vol. 283(C).
    15. Yang Qu & Wang Su & Panpan Zhang & Cui Li & Jinfeng Gao & Xiaoli Gao & Pengke Wang & Shuhuai Jiang & Baili Feng, 2012. "Effects of Different Water Harvesting on Soil Water, Growth and Yield of the Proso Millet (Panicum miliaceum L.) in a Semiarid Region of Northwest China," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(9), pages 106-106, July.
    16. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    17. Wang, Hong & Wang, Chenbing & Zhao, Xiumei & Wang, Falin, 2015. "Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 154(C), pages 20-28.
    18. Bu, Ling-duo & Liu, Jian-liang & Zhu, Lin & Luo, Sha-sha & Chen, Xin-ping & Li, Shi-qing & Lee Hill, Robert & Zhao, Ying, 2013. "The effects of mulching on maize growth, yield and water use in a semi-arid region," Agricultural Water Management, Elsevier, vol. 123(C), pages 71-78.
    19. Wang, Zhenhua & Wu, Qiang & Fan, Bihang & Zheng, Xurong & Zhang, Jinzhu & Li, Wenhao & Guo, Li, 2019. "Effects of mulching biodegradable films under drip irrigation on soil hydrothermal conditions and cotton (Gossypium hirsutum L.) yield," Agricultural Water Management, Elsevier, vol. 213(C), pages 477-485.
    20. Zhang, Zhe & Zhang, Yanqing & Sun, Zhanxiang & Zheng, Jiaming & Liu, Enke & Feng, Liangshan & Feng, Chen & Si, Pengfei & Bai, Wei & Cai, Qian & Yang, Ning & van der Werf, Wopke & Zhang, Lizhen, 2019. "Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 212(C), pages 203-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:66:y:2020:i:11:id:316-2020-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.