IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v65y2019i7id296-2019-pse.html
   My bibliography  Save this article

Phosphorus affects enzymatic activity and chemical properties of cotton soil

Author

Listed:
  • Yang Gao

    (Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China)

  • Huiyi Huang

    (Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China)

  • Hongyi Zhao

    (Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China)

  • Houqiang Xia

    (Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China)

  • Miao Sun

    (State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R. China)

  • Zongyun Li

    (Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China)

  • Pengcheng Li

    (State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R. China)

  • Cangsong Zheng

    (State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R. China)

  • Helin Dong

    (State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R. China)

  • Jingran Liu

    (Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China)

Abstract

Pot experiments were conducted in 2017 with two cotton cultivars (CCRI 79 and LMY 28) and three phosphorus (P) levels: 3, 8 and 12 mg P2O5/kg as P0, P1 and P2, respectively. In this study, the soil water-soluble organic carbon content increased as the soil available P (AP) increased, while there were no significant variations for soil total organic matter content among the three AP levels. The activities of invertase, cellulase and urease in cotton soil decreased significantly in the P0. There were positive correlations between invertase and cellulose activities with soil organic carbon and inorganic-nitrogen (N); these correlated negatively with soil C/N ratio and AP level. In addition, high soil AP can raise soil AP and enhance alkaline phosphatase activity, which had a significant negative relationship with the soil C/P ratio. Urease activity had a significant positive relationship with soil NH4+-N, C/P and N/P, as well as a negative correlation with soil C/N. Moreover, soil NH4+-N and NO3--N in the P1 and P2 were lower than in the P0, which might be an effect of high AP on soil N availability.

Suggested Citation

  • Yang Gao & Huiyi Huang & Hongyi Zhao & Houqiang Xia & Miao Sun & Zongyun Li & Pengcheng Li & Cangsong Zheng & Helin Dong & Jingran Liu, 2019. "Phosphorus affects enzymatic activity and chemical properties of cotton soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(7), pages 361-368.
  • Handle: RePEc:caa:jnlpse:v:65:y:2019:i:7:id:296-2019-pse
    DOI: 10.17221/296/2019-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/296/2019-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/296/2019-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/296/2019-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(Supplemen), pages 72-87, January.
    2. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(S1), pages 72-87.
    3. Q. Li & J.H. Liang & Y.Y. He & Q.J. Hu & S. Yu, 2014. "Effect of land use on soil enzyme activities at karst area in Nanchuan, Chongqing, Southwest China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(1), pages 15-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    2. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    3. Rodríguez-Ortega, T. & Olaizola, A.M. & Bernués, A., 2018. "A novel management-based system of payments for ecosystem services for targeted agri-environmental policy," Ecosystem Services, Elsevier, vol. 34(PA), pages 74-84.
    4. Andreas Niedermayr & Lena Schaller & Petr Mariel & Pia Kieninger & Jochen Kantelhardt, 2018. "Heterogeneous Preferences for Public Goods Provided by Agriculture in a Region of Intensive Agricultural Production: The Case of the Marchfeld," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    5. Unknown, 2015. "Towards A Sustainable Soil Fertility Strategy in Ghana," Miscellaneous Publications 212898, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    6. repec:idb:brikps:64718 is not listed on IDEAS
    7. L. Toma & A. P. Barnes & L.-A. Sutherland & S. Thomson & F. Burnett & K. Mathews, 2018. "Impact of information transfer on farmers’ uptake of innovative crop technologies: a structural equation model applied to survey data," The Journal of Technology Transfer, Springer, vol. 43(4), pages 864-881, August.
    8. Fang He & Linlin Shi & Jingcheng Tian & Lijuan Mei, 2021. "Effects of long-term fertilisation on soil organic carbon sequestration after a 34-year rice-wheat rotation in Taihu Lake Basin," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(1), pages 1-7.
    9. Muyanga, Milu & Jayne, T.S., 2014. "Effects of rising rural population density on smallholder agriculture in Kenya," Food Policy, Elsevier, vol. 48(C), pages 98-113.
    10. Shan He & Hailun Zhu & Amir Reza Shahtahmassebi & Lefeng Qiu & Chaofan Wu & Zhangquan Shen & Ke Wang, 2018. "Spatiotemporal Variability of Soil Nitrogen in Relation to Environmental Factors in a Low Hilly Region of Southeastern China," IJERPH, MDPI, vol. 15(10), pages 1-19, September.
    11. Getnet, Kindie & Mekuria, Wolde & Langan, Simon & Rivington, Mike & Novo, Paula & Black, Helaina, 2017. "Ecosystem-based interventions and farm household welfare in degraded areas: Comparative evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 154(C), pages 53-62.
    12. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.
    13. Mariana Regina Durigan & Maurício Roberto Cherubin & Plínio Barbosa De Camargo & Joice Nunes Ferreira & Erika Berenguer & Toby Alan Gardner & Jos Barlow & Carlos Tadeu dos Santos Dias & Diana Signor &, 2017. "Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    14. Hans-Peter Weikard, 2016. "Phosphorus recycling and food security in the long run: a conceptual modelling approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(2), pages 405-414, April.
    15. Bos, Jules F.F.P. & ten Berge, Hein F.M. & Verhagen, Jan & van Ittersum, Martin K., 2017. "Trade-offs in soil fertility management on arable farms," Agricultural Systems, Elsevier, vol. 157(C), pages 292-302.
    16. Farooq Shah & Wei Wu, 2019. "Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    17. Jayne, T.S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2016. "Agricultural Input Subsidy Programs in Africa: An Assessment of Recent Evidence," Food Security International Development Working Papers 245892, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    18. Lulseged Tamene & Quang Le & Paul Vlek, 2014. "A Landscape Planning and Management Tool for Land and Water Resources Management: An Example Application in Northern Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 407-424, January.
    19. Giltrap, Donna L. & Kirschbaum, Miko U.F. & Liáng, Lìyǐn L., 2021. "The potential effectiveness of four different options to reduce environmental impacts of grazed pastures. A model-based assessment," Agricultural Systems, Elsevier, vol. 186(C).
    20. Niedermayr, A. & Schaller, L. & Kieninger, P. & Kantelhardt, J., 2018. "Integrating soil and climate-related aspects into the valuation of willingness to pay for public goods provided by agriculture in an intensive agricultural production region: The case of the Marchfeld," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276963, International Association of Agricultural Economists.
    21. Bleuler, Mira & Farina, Roberta & Francaviglia, Rosa & di Bene, Claudia & Napoli, Rosario & Marchetti, Alessandro, 2017. "Modelling the impacts of different carbon sources on the soil organic carbon stock and CO2 emissions in the Foggia province (Southern Italy)," Agricultural Systems, Elsevier, vol. 157(C), pages 258-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:65:y:2019:i:7:id:296-2019-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.