IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v63y2017i1id141-2016-pse.html
   My bibliography  Save this article

Chemical properties and microbial responses to biochar and compost amendments in the soil under continuous watermelon cropping

Author

Listed:
  • Yun CAO

    (Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China)

  • Yan MA
  • Dejie GUO

    (Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China)

  • Qiujun WANG

    (Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China)

  • Guangfei WANG

    (Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China)

Abstract

Biochar added to soil can improve crop growth and productivity. However, the mechanisms of crop growth improvement by biochar application are not well understood, particularly in the presence of soil-borne pathogens caused by continuous monocropping. Thus, a two-year field experiment was carried out to study the chemical and microbiological response of Lixisols (pH 5.8) to the amendment of biochar and its effect on watermelon productivity and Fusarium wilt disease incidence. Biochar was added alone or together with compost before watermelon transplanting. Mixed application of biochar with compost significantly increased watermelon yield as compared to adding compost or biochar alone. However, biochar had no effects on Fusarium wilt disease incidence in both years. Combined application of biochar with compost significantly increased contents of soil NH4+-N, available phosphorus (P) and available potassium (K). Soil Biolog data indicated that the Shannon-Weaver diversity index and evenness index were increased significantly in the combined application of biochar with the compost treatment. There was a significant positive correlation between watermelon yield and soil NH4+-N, available P, available K, microbial diversity or microbial evenness in the continuous watermelon monocropping system.

Suggested Citation

  • Yun CAO & Yan MA & Dejie GUO & Qiujun WANG & Guangfei WANG, 2017. "Chemical properties and microbial responses to biochar and compost amendments in the soil under continuous watermelon cropping," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(1), pages 1-7.
  • Handle: RePEc:caa:jnlpse:v:63:y:2017:i:1:id:141-2016-pse
    DOI: 10.17221/141/2016-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/141/2016-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/141/2016-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/141/2016-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M.F. Qayyum & D. Steffens & H.P. Reisenauer & S. Schubert, 2014. "Biochars influence differential distribution and chemical composition of soil organic matter," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(8), pages 337-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Kraska & P. Oleszczuk & S. Andruszczak & E. Kwiecińska-Poppe & K. Różyło & E. Pałys & P. Gierasimiuk & Z. Michałojć, 2016. "Effect of various biochar rates on winter rye yield and the concentration of available nutrients in the soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(11), pages 483-489.
    2. K. Břendová & P. Tlustoš & J. Száková, 2015. "Biochar immobilizes cadmium and zinc and improves phytoextraction potential of willow plants on extremely contaminated soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(7), pages 303-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:63:y:2017:i:1:id:141-2016-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.