IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v63y2017i11id82-2017-jfs.html
   My bibliography  Save this article

Climate-induced seasonal activity and flight period of cerambycid beetles in the Zselic forests, Hungary

Author

Listed:
  • Sándor KESZTHELYI
  • Zsolt PÓNYA

    (Department of Plant Production and Protection, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary)

  • Ferenc PÁL-FÁM

    (Department of Plant Production and Protection, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary)

Abstract

The longhorn beetle fauna (Coleoptera: Cerambycidae) was studied in the Zselic region (Somogy county) in Hungary in seven consecutive years (2009-2015). In total 2,931 specimens were observed and the presence of 83 species was identified during the sampling period. The most abundant species were: Plagionotus arcuatus (Linnaeus, 1758) (pi = 10.542); Cerambyx scopoli Füssli, 1775 (pi = 8.359), Dorcadion aethiops (Scopoli, 1763) (pi = 6.653) and Strangalia melanura (Redtenbacher, 1867) (pi = 6.209). According to our examinations, individual meteorological factors, particularly temperature, directly influenced the dispersal and the activity of longhorn beetles (P = 0.038) as well as the species richness (P = 0.047), as did weather systems formation and movement of air masses, cold and warm fronts. It is also shown that the activity of the insects is influenced by daily weather conditions. The activity of arthropods was higher during warm, dry days and less pronounced during cold, wet ones coupled with high air pressure values. A conspicuous relationship was observable between the appearance of cerambycid beetles and their time period. According to the results of Principal Coordinate Analysis four major groups can be distinguished: early-flight, late spring-flight, summer-flight and late-flight species.

Suggested Citation

  • Sándor KESZTHELYI & Zsolt PÓNYA & Ferenc PÁL-FÁM, 2017. "Climate-induced seasonal activity and flight period of cerambycid beetles in the Zselic forests, Hungary," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(11), pages 503-510.
  • Handle: RePEc:caa:jnljfs:v:63:y:2017:i:11:id:82-2017-jfs
    DOI: 10.17221/82/2017-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/82/2017-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/82/2017-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/82/2017-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    2. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    3. Caviedes, Julián & Ibarra, José Tomás & Calvet-Mir, Laura & Álvarez-Fernández, Santiago & Junqueira, André Braga, 2024. "Indigenous and local knowledge on social-ecological changes is positively associated with livelihood resilience in a Globally Important Agricultural Heritage System," Agricultural Systems, Elsevier, vol. 216(C).
    4. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    5. Aibo Jin & Gachen Zhang & Ping Ma & Xiangrong Wang, 2024. "Ecosystem Services Trade-Offs in the Chaohu Lake Basin Based on Land-Use Scenario Simulations," Land, MDPI, vol. 13(12), pages 1-29, December.
    6. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    7. Chomitz, Kenneth M. & Thomas, Timothy S. & Brandão, Antônio Salazar P., 2005. "The economic and environmental impact of trade in forest reserve obligations: a simulation analysis of options for dealing with habitat heterogeneity," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 43(4), January.
    8. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    9. Tyler M Harms & Kevin T Murphy & Xiaodan Lyu & Shane S Patterson & Karen E Kinkead & Stephen J Dinsmore & Paul W Frese, 2017. "Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
    10. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    11. Brannstrom, Christian, 2001. "Conservation-with-Development Models in Brazil's Agro-Pastoral Landscapes," World Development, Elsevier, vol. 29(8), pages 1345-1359, August.
    12. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    13. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    14. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    15. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    16. Sehgal, Shaina & Babu, Suresh, 2021. "Economic Transformation of the Nicobar Islands Post-tsunami: A Material Import–Export Analysis," Ecology, Economy and Society - the INSEE Journal, Indian Society of Ecological Economics (INSEE), vol. 4(02), July.
    17. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    18. Davis, Katrina & Pannell, David J. & Kragt, Marit & Gelcich, Stefan & Schilizzi, Steven, 2014. "Accounting for enforcement is essential to improve the spatial allocation of marine restricted-use zoning systems," Working Papers 195718, University of Western Australia, School of Agricultural and Resource Economics.
    19. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    20. Shah, M., 2018. "Reforming India’s water governance to meet 21st century challenges: practical pathways to realizing the vision of the Mihir Shah Committee," IWMI Working Papers H049192, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:63:y:2017:i:11:id:82-2017-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.