IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v60y2014i9id37-2014-jfs.html
   My bibliography  Save this article

Outlook of logging perspectives in the Czech Republic for the period 2013-2032

Author

Listed:
  • M. Synek

    (Forest Management Institute in Brandýs nad Labem, Brandýs nad Labem, Czech Republic)

  • J. Vašíček

    (Forest Management Institute in Brandýs nad Labem, Brandýs nad Labem, Czech Republic)

  • M. Zeman

    (Forest Management Institute in Brandýs nad Labem, Brandýs nad Labem, Czech Republic)

Abstract

The aim of the submitted work was to analyze the outlook of logging perspectives in the next two decades (2013-2032) for all forests in the territory of the Czech Republic. The analyses made use of the national database of forest management plans and guidelines. For the purpose of these analyses, the forests were divided into commercially exploitable forests and forests commercially exploitable with restrictions. The latter ones included protection forests and the category of special purpose forests, i.e. 31c - forests in the territory of national parks and national nature reserves, and 32a - forests occurring in the first zones of protected landscape areas, and forests occurring in nature preserves and nature monuments. In addition to the potential total volume of timber logging, perspectives were studied separately for coniferous and broadleaved tree species as well as for individual main tree species. The derived model mean annual cut of 15.51 mil. m3 corresponds to the current timber production in the Czech Republic. Results of the analyses indicate that reduced logging of coniferous, namely spruce, timber is to be expected in the next twenty years.

Suggested Citation

  • M. Synek & J. Vašíček & M. Zeman, 2014. "Outlook of logging perspectives in the Czech Republic for the period 2013-2032," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 60(9), pages 372-381.
  • Handle: RePEc:caa:jnljfs:v:60:y:2014:i:9:id:37-2014-jfs
    DOI: 10.17221/37/2014-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/37/2014-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/37/2014-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/37/2014-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lauri, Pekka & Havlík, Petr & Kindermann, Georg & Forsell, Nicklas & Böttcher, Hannes & Obersteiner, Michael, 2014. "Woody biomass energy potential in 2050," Energy Policy, Elsevier, vol. 66(C), pages 19-31.
    2. He, Lixia & English, Burton C. & De La Torre Ugarte, Daniel G. & Hodges, Donald G., 2014. "Woody biomass potential for energy feedstock in United States," Journal of Forest Economics, Elsevier, vol. 20(2), pages 174-191.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Randall Jackson & Amir B. Ferreira Neto & Elham Erfanian, 2016. "Woody Biomass Processing: Potential Economic Impacts on Rural Regions," Working Papers Working Paper 2016-04-v3, Regional Research Institute, West Virginia University.
    2. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    3. Wu, Wenchao & Hasegawa, Tomoko & Fujimori, Shinichiro & Takahashi, Kiyoshi & Oshiro, Ken, 2020. "Assessment of bioenergy potential and associated costs in Japan for the 21st century," Renewable Energy, Elsevier, vol. 162(C), pages 308-321.
    4. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    5. Joseph I. Orisaleye & Simeon O. Jekayinfa & Ralf Pecenka & Adebayo A. Ogundare & Michael O. Akinseloyin & Opeyemi L. Fadipe, 2022. "Investigation of the Effects of Torrefaction Temperature and Residence Time on the Fuel Quality of Corncobs in a Fixed-Bed Reactor," Energies, MDPI, vol. 15(14), pages 1-16, July.
    6. Solarte-Toro, Juan Camilo & González-Aguirre, Jose Andrés & Poveda Giraldo, Jhonny Alejandro & Cardona Alzate, Carlos A., 2021. "Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Randall W. Jackson & Amir Borges Ferreira Neto & Elham Erfanian & Péter Járosi, 2019. "Woody Biomass Processing and Rural Regional Development," Economic Development Quarterly, , vol. 33(3), pages 234-247, August.
    8. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Vikas Menghwani & Chad Walker & Tim Kalke & Bram Noble & Greg Poelzer, 2022. "Harvesting Local Energy: A Case Study of Community-Led Bioenergy Development in Galena, Alaska," Energies, MDPI, vol. 15(13), pages 1-17, June.
    10. Yan, Pu & Xiao, Chunwang & Xu, Li & Yu, Guirui & Li, Ang & Piao, Shilong & He, Nianpeng, 2020. "Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    11. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    12. Tiziana Maria Sirangelo & Richard Andrew Ludlow & Tatiana Chenet & Luisa Pasti & Natasha Damiana Spadafora, 2023. "Multi-Omics and Genome Editing Studies on Plant Cell Walls to Improve Biomass Quality," Agriculture, MDPI, vol. 13(4), pages 1-19, March.
    13. Vera Marcantonio & Danilo Monarca & Mauro Villarini & Andrea Di Carlo & Luca Del Zotto & Enrico Bocci, 2020. "Biomass Steam Gasification, High-Temperature Gas Cleaning, and SOFC Model: A Parametric Analysis," Energies, MDPI, vol. 13(22), pages 1-13, November.
    14. Zanchini, Raffaele & Blanc, Simone & Pippinato, Liam & Poratelli, Francesca & Bruzzese, Stefano & Brun, Filippo, 2022. "Enhancing wood products through ENplus, FSC and PEFC certifications: Which attributes do consumers value the most?," Forest Policy and Economics, Elsevier, vol. 142(C).
    15. Yahya, Muhammad & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah & Ghosh, Sajal, 2021. "Can clean energy stock price rule oil price? New evidences from a regime-switching model at first and second moments," Energy Economics, Elsevier, vol. 95(C).
    16. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    17. Benítez, Almudena & Amaro-Gahete, Juan & Chien, Yu-Chuan & Caballero, Álvaro & Morales, Julián & Brandell, Daniel, 2022. "Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. C. Tattersall Smith & Brenna Lattimore & Göran Berndes & Niclas Scott Bentsen & Ioannis Dimitriou & J.W.A. (Hans) Langeveld & Evelyne Thiffault, 2017. "Opportunities to encourage mobilization of sustainable bioenergy supply chains," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    19. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    20. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:60:y:2014:i:9:id:37-2014-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.