Author
Listed:
- A. Inoue
(Laboratory of Forest Ecology, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan)
- K. Yamamoto
(Laboratory of Forest Environment and Resources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan)
- N. Mizoue
(Laboratory of Forest Planning, Faculty of Agriculture, Kyushu University, Fukuoka, Japan)
Abstract
This study presents the effects of operator bias and variation in interactive thresholding on the estimation of light environment using hemispherical photography. Twenty-one hemispherical photographs taken beneath a wide range of canopy densities were visually converted to binary images twice by 21 operators, and then the gap fraction was computed from the images. The interactive threshold varied greatly among the different operators and within a single operator, which resulted in a considerable operator bias and variation in the gap fraction. This study also compared three widely used automatic thresholding algorithms, which were installed in freely available software LIA for Win32 for analyzing hemispherical photography, with interactive thresholding using the same photographs. The median of the interactive threshold by repetitive interactive thresholdings from 21 operators was assumed to be correct for the comparison. The results indicated that MINIMUM was considered to be a better algorithm than the other ones installed in LIA32 when the gap fraction was over 10%. However, VARIANCE seemed to be superior to MINIMUM under the low gap fraction and the cloudy sky condition with dark and white clouds. This implied that MINIMUM or VARIANCE should be used for analyzing hemispherical photographs with LIA32. In conclusion, we need to pay attention to the selection of the automatic thresholding algorithm and the sky condition when taking hemispherical photographs.
Suggested Citation
A. Inoue & K. Yamamoto & N. Mizoue, 2011.
"Comparison of automatic and interactive thresholding of hemispherical photography,"
Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 57(2), pages 78-87.
Handle:
RePEc:caa:jnljfs:v:57:y:2011:i:2:id:68-2010-jfs
DOI: 10.17221/68/2010-JFS
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:57:y:2011:i:2:id:68-2010-jfs. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.