IDEAS home Printed from https://ideas.repec.org/a/bxr/bxrceb/2013-186521.html
   My bibliography  Save this article

Methodes De Lissage D’Une Serie Temporelle :Le Probleme Des Extremites

Author

Listed:
  • Michel Grun-Rehomme
  • OLGA VASYECHKO

Abstract

De nombreuses méthodes, basées sur les filtres, ont été développées pour estimer la composantetendance-cycle d’une série temporelle. Parmi ces outils, les moyennes mobiles demeurenttoujours efficaces. En particulier, la moyenne mobile symétrique d’Henderson est appliquéepour estimer la tendance-cycle dans le programme de désaisonnalisation X11. Mais pour lesobservations les plus récentes, il est nécessaire d’utiliser des filtres asymétriques. Dans cetarticle, une nouvelle méthode de lissage, basée sur le noyau d’Epanechnikov, est utilisée pourtraiter les extrémités d’une série temporelle. Cette méthode est comparée au filtre d’Hendersonsur des données de l’Indice de Production Industrielle.

Suggested Citation

  • Michel Grun-Rehomme & OLGA VASYECHKO, 2013. "Methodes De Lissage D’Une Serie Temporelle :Le Probleme Des Extremites," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 56(2), pages 163-174.
  • Handle: RePEc:bxr:bxrceb:2013/186521
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/186521/1/ARTICLEGRUNREHOMMEVASYECHKO.pdf
    File Function: ARTICLEGRUNREHOMMEVASYECHKO
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dagum, Estela Bee & Bianconcini, Silvia, 2008. "The Henderson Smoother in Reproducing Kernel Hilbert Space," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 536-545.
    2. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    3. Theodore Alexandrov & Silvia Bianconcini & Estela Bee Dagum & Peter Maass & Tucker S. McElroy, 2012. "A Review of Some Modern Approaches to the Problem of Trend Extraction," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 593-624, November.
    4. Quenneville, Benoit & Ladiray, Dominique & Lefrancois, Bernard, 2003. "A note on Musgrave asymmetrical trend-cycle filters," International Journal of Forecasting, Elsevier, vol. 19(4), pages 727-734.
    5. Tommaso Proietti & Alessandra Luati, 2008. "Real Time Estimation in Local Polynomial Regression, with Application to Trend-Cycle Analysis," CEIS Research Paper 112, Tor Vergata University, CEIS, revised 14 Jul 2008.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianconcini, Silvia & Quenneville, Benoit, 2010. "Real Time Analysis Based on Reproducing Kernel Henderson Filters/Análisis en tiempo real basado en la reproducción de los filtros de núcleo de Henderson," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 553-574, Diciembre.
    2. McElroy, Tucker S. & Jach, Agnieszka, 2023. "Identification of the differencing operator of a non-stationary time series via testing for zeroes in the spectral density," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    3. McElroy, Tucker S. & Wildi, Marc, 2020. "The Multivariate Linear Prediction Problem: Model-Based and Direct Filtering Solutions," Econometrics and Statistics, Elsevier, vol. 14(C), pages 112-130.
    4. Dagum, Estela Bee, 2010. "Business Cycles and Current Economic Analysis/Los ciclos económicos y el análisis económico actual," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 577-594, Diciembre.
    5. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    6. Terence Mills, 2007. "A Note on Trend Decomposition: The 'Classical' Approach Revisited with an Application to Surface Temperature Trends," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(8), pages 963-972.
    7. Yuanhua Feng & Thomas Gries, 2017. "Data-driven local polynomial for the trend and its derivatives in economic time series," Working Papers CIE 102, Paderborn University, CIE Center for International Economics.
    8. Anusha, "undated". "Evaluating reliability of some symmetric and asymmetric univariate filters," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2015-030, Indira Gandhi Institute of Development Research, Mumbai, India.
    9. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    10. Mauricio Gallardo & Hernán Rubio, 2009. "Diagnóstico de estacionalidad con X-12-ARIMA," Economic Statistics Series 76, Central Bank of Chile.
    11. Simone Elmer & Thomas Maag, 2009. "The Persistence of Inflation in Switzerland," KOF Working papers 09-235, KOF Swiss Economic Institute, ETH Zurich.
    12. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    13. Kroes, James R. & Manikas, Andrew S. & Gattiker, Thomas F., 2018. "Operational leanness and retail firm performance since 1980," International Journal of Production Economics, Elsevier, vol. 197(C), pages 262-274.
    14. Quenneville, Benoit & Ladiray, Dominique & Lefrancois, Bernard, 2003. "A note on Musgrave asymmetrical trend-cycle filters," International Journal of Forecasting, Elsevier, vol. 19(4), pages 727-734.
    15. Massmann, Michael & Mitchell, James, 2003. "Reconsidering the evidence: Are Eurozone business cycles converging," ZEI Working Papers B 05-2003, University of Bonn, ZEI - Center for European Integration Studies.
    16. Regina Kaiser & Agustín Maravall, 2000. "Notes on Time Series Analysis, ARIMA Models and Signal Extraction," Working Papers 0012, Banco de España.
    17. Fang Han & Fei Zhao & Fuxing Li & Xiaoli Shi & Qiang Wei & Weimiao Li & Wei Wang, 2023. "Improvement of Monitoring Production Status of Iron and Steel Factories Based on Thermal Infrared Remote Sensing," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    18. Hai Yue Liu & Xiao Lan Chen, 2017. "The imported price, inflation and exchange rate pass-through in China," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1279814-127, January.
    19. Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
    20. Henryk Gurgul & Marcin Suder, 2013. "The Properties of ATMs Development Stages - an Empirical Analysis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(3), pages 443-466, September.

    More about this item

    Keywords

    Séries temporelles / Time Series Analysis; Méthode de lissage / Smoothing techniques; Moyennes mobiles asymétriques / Asymmetric Moving Average; Noyaux / Kernels;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bxr:bxrceb:2013/186521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/dulbebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.