IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v22y2004i4-2004p301-318n4.html
   My bibliography  Save this article

Efficient estimation of a linear functional of a bivariate distribution with equal, but unknown, marginals: The minimum chi-square approach

Author

Listed:
  • Peng Hanxiang
  • Schick Anton

Abstract

In this paper we construct efficient estimators of linear functionals of a bivariate distribution with equal marginals. The proposed estimator generalizes the construction of efficient estimators given by Bickel, Ritov and Wellner (1991) for the case of known, but not necessarily equal, marginals.

Suggested Citation

  • Peng Hanxiang & Schick Anton, 2004. "Efficient estimation of a linear functional of a bivariate distribution with equal, but unknown, marginals: The minimum chi-square approach," Statistics & Risk Modeling, De Gruyter, vol. 22(4), pages 301-318, April.
  • Handle: RePEc:bpj:strimo:v:22:y:2004:i:4/2004:p:301-318:n:4
    DOI: 10.1524/stnd.22.4.301.64311
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.22.4.301.64311
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.22.4.301.64311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Hanxiang & Schick, Anton, 2002. "On efficient estimation of linear functionals of a bivariate distribution with known marginals," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 83-91, August.
    2. Peng, Hanxiang & Schick, Anton, 2005. "Efficient estimation of linear functionals of a bivariate distribution with equal, but unknown marginals: the least-squares approach," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 385-409, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segers, J.J.J. & van den Akker, R. & Werker, B.J.M., 2008. "Improving Upon the Marginal Empirical Distribution Functions when the Copula is Known," Other publications TiSEM 950a8cda-8f8c-43a9-a5c2-8, Tilburg University, School of Economics and Management.
    2. Segers, J.J.J. & van den Akker, R. & Werker, B.J.M., 2008. "Improving Upon the Marginal Empirical Distribution Functions when the Copula is Known," Discussion Paper 2008-40, Tilburg University, Center for Economic Research.
    3. Ursula U. Müller & Hanxiang Peng & Anton Schick, 2019. "Inference about the slope in linear regression: an empirical likelihood approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 181-211, February.
    4. Peng, Hanxiang & Schick, Anton, 2018. "Asymptotic normality of quadratic forms with random vectors of increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 22-39.
    5. Penev, Spiridon & Peng, Hanxiang & Schick, Anton & Wefelmeyer, Wolfgang, 2004. "Efficient estimators for functionals of Markov chains with parametric marginals," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 335-345, February.
    6. Peng Hanxiang & Schick Anton, 2004. "Estimation of linear functionals of bivariate distributions with parametric marginals," Statistics & Risk Modeling, De Gruyter, vol. 22(1), pages 61-78, January.
    7. Peng, Hanxiang & Schick, Anton, 2005. "Efficient estimation of linear functionals of a bivariate distribution with equal, but unknown marginals: the least-squares approach," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 385-409, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:22:y:2004:i:4/2004:p:301-318:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.