IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v20y2016i1p75-96n6.html
   My bibliography  Save this article

Recurrence quantification analysis of denoised index returns via alpha-stable modeling of wavelet coefficients: detecting switching volatility regimes

Author

Listed:
  • Tzagkarakis George

    (EONOS Investment Technologies, Paris, France)

  • Dionysopoulos Thomas

    (Avenir Finance Investment Managers, Paris, France AXIANTA Research, Nicosia, Cyprus)

  • Achim Alin

    (University of Bristol – Visual Information Lab, Bristol, UK)

Abstract

In this paper we propose an enhancement of recurrence quantification analysis (RQA) performance in extracting the underlying non-linear dynamics of market index returns, under the assumption of data corrupted by additive white Gaussian noise. More specifically, first we show that the statistical distribution of wavelet decompositions of distinct index returns is best fitted using members of the alpha-stable distributions family. Then, an efficient maximum a posteriori (MAP) estimator is applied on pairs of wavelet coefficients at adjacent levels to suppress the noise effect, prior to performing RQA. Quantitative and qualitative results on 22 future indices indicate an improved interpretation capability of RQA when applied on denoised data using our proposed approach, as opposed to previous methods based solely on a Gaussian assumption for the underlying statistics, in terms of extracting the underlying dynamical structure of index returns generating processes. Furthermore, our results reveal an increased accuracy of the proposed method in detecting switching volatility regimes, which is important for estimating the risk associated with a financial instrument.

Suggested Citation

  • Tzagkarakis George & Dionysopoulos Thomas & Achim Alin, 2016. "Recurrence quantification analysis of denoised index returns via alpha-stable modeling of wavelet coefficients: detecting switching volatility regimes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(1), pages 75-96, February.
  • Handle: RePEc:bpj:sndecm:v:20:y:2016:i:1:p:75-96:n:6
    DOI: 10.1515/snde-2014-0102
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2014-0102
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2014-0102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claude Diebolt & Catherine Kyrtsou, 2005. "New Trends in Macroeconomics," Post-Print hal-00279607, HAL.
    2. Viviana Fernandez, 2008. "Multi‐period hedge ratios for a multi‐asset portfolio when accounting for returns co‐movement," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(2), pages 182-207, February.
    3. Rua, António & Nunes, Luís C., 2009. "International comovement of stock market returns: A wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 632-639, September.
    4. Jorge Belaire-Franch, & Dulce Contreras & Lorena Tordera-Lledo, 2002. "Assessing Non-Linear Structures in Real Exchange Rates Using Recurrence Plot Strategies," Computing in Economics and Finance 2002 239, Society for Computational Economics.
    5. Gençay, Ramazan & Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon J., 2001. "An Introduction to Wavelets and Other Filtering Methods in Finance and Economics," Elsevier Monographs, Elsevier, edition 1, number 9780122796708.
    6. Nekhili, Ramzi & Altay-Salih, Aslihan & Gençay, Ramazan, 2002. "Exploring exchange rate returns at different time horizons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 671-682.
    7. Francis In & Sangbae Kim, 2006. "The Hedge Ratio and the Empirical Relationship between the Stock and Futures Markets: A New Approach Using Wavelet Analysis," The Journal of Business, University of Chicago Press, vol. 79(2), pages 799-820, March.
    8. Michael Graham & Jussi Nikkinen, 2011. "Co-movement of the Finnish and international stock markets: a wavelet analysis," The European Journal of Finance, Taylor & Francis Journals, vol. 17(5-6), pages 409-425.
    9. Antoniou, Antonios & Vorlow, Constantinos E., 2004. "Recurrence quantification analysis of wavelet pre-filtered index returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 257-262.
    10. Strozzi, Fernanda & Zaldı́var, José-Manuel & Zbilut, Joseph P, 2002. "Application of nonlinear time series analysis techniques to high-frequency currency exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 520-538.
    11. Yongmiao Hong & Chihwa Kao, 2004. "Wavelet-Based Testing for Serial Correlation of Unknown Form in Panel Models," Econometrica, Econometric Society, vol. 72(5), pages 1519-1563, September.
    12. Catherine Kyrtsou & Constantinos E. Vorlow, 2005. "Complex Dynamics in Macroeconomics: A Novel Approach," Springer Books, in: Claude Diebolt & Catherine Kyrtsou (ed.), New Trends in Macroeconomics, pages 223-238, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bredin, Don & Conlon, Thomas & Potì, Valerio, 2015. "Does gold glitter in the long-run? Gold as a hedge and safe haven across time and investment horizon," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 320-328.
    2. Catherine Kyrtsou & Michel Terraza, 2010. "Seasonal Mackey–Glass–GARCH process and short-term dynamics," Empirical Economics, Springer, vol. 38(2), pages 325-345, April.
    3. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Gold, oil, and stocks: Dynamic correlations," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 186-201.
    4. Chakrabarty, Anindya & De, Anupam & Gunasekaran, Angappa & Dubey, Rameshwar, 2015. "Investment horizon heterogeneity and wavelet: Overview and further research directions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 45-61.
    5. Power, Gabriel J. & Eaves, James & Turvey, Calum & Vedenov, Dmitry, 2017. "Catching the curl: Wavelet thresholding improves forward curve modelling," Economic Modelling, Elsevier, vol. 64(C), pages 312-321.
    6. Conlon, Thomas & Cotter, John & Gençay, Ramazan, 2018. "Long-run wavelet-based correlation for financial time series," European Journal of Operational Research, Elsevier, vol. 271(2), pages 676-696.
    7. Thomas Conlon & Brian M. Lucey & Gazi Salah Uddin, 2018. "Is gold a hedge against inflation? A wavelet time-scale perspective," Review of Quantitative Finance and Accounting, Springer, vol. 51(2), pages 317-345, August.
    8. Kyrtsou, Catherine & Malliaris, Anastasios G. & Serletis, Apostolos, 2009. "Energy sector pricing: On the role of neglected nonlinearity," Energy Economics, Elsevier, vol. 31(3), pages 492-502, May.
    9. Thomas Conlon & John Cotter & Ramazan Gençay, 2015. "Long-run international diversification," Working Papers 201502, Geary Institute, University College Dublin.
    10. Karagianni Stella & Kyrtsou Catherine, 2011. "Analysing the Dynamics between U.S. Inflation and Dow Jones Index Using Non-Linear Methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-25, March.
    11. Claudiu Tiberiu Albulescu & Daniel Goyeau & Aviral Kumar Tiwari, 2017. "Co-movements and contagion between international stock index futures markets," Empirical Economics, Springer, vol. 52(4), pages 1529-1568, June.
    12. Thomas Conlon & John Cotter & Ramazan Gençay, 2016. "Commodity futures hedging, risk aversion and the hedging horizon," The European Journal of Finance, Taylor & Francis Journals, vol. 22(15), pages 1534-1560, December.
    13. Krishnadas M. & K. P. Harikrishnan & G. Ambika, 2022. "Recurrence measures and transitions in stock market dynamics," Papers 2208.03456, arXiv.org.
    14. Sergii Piskun & Oleksandr Piskun & Dmitry Chabanenko, 2011. "RQA Application for the Monitoring of Financial and Commodity markets state," Papers 1112.0297, arXiv.org.
    15. Conlon, Thomas & Cotter, John, 2013. "Downside risk and the energy hedger's horizon," Energy Economics, Elsevier, vol. 36(C), pages 371-379.
    16. Roy, Archi & Soni, Anchal & Deb, Soudeep, 2023. "A wavelet-based methodology to compare the impact of pandemic versus Russia–Ukraine conflict on crude oil sector and its interconnectedness with other energy and non-energy markets," Energy Economics, Elsevier, vol. 124(C).
    17. Wen-Yi CHEN & Yu-Hui LIN, 2016. "Co-Movement of Healthcare Financing in OECD Countries: Evidence from Discrete Wavelet Analyses," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 40-56, September.
    18. Yang, Lu & Cai, Xiao Jing & Zhang, Huimin & Hamori, Shigeyuki, 2016. "Interdependence of foreign exchange markets: A wavelet coherence analysis," Economic Modelling, Elsevier, vol. 55(C), pages 6-14.
    19. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2017. "Do oil price asymmetric effects on the stock market persist in multiple time horizons?," Applied Energy, Elsevier, vol. 185(P2), pages 1799-1808.
    20. Bilgili, Faik & Mugaloglu, Erhan & Koçak, Emrah, 2018. "The impact of oil prices on CO2 emissions in China: A Wavelet coherence approach," MPRA Paper 90170, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:20:y:2016:i:1:p:75-96:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.