IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v8y2009i1n26.html
   My bibliography  Save this article

A Parametric Model for Analyzing Anticipation in Genetically Predisposed Families

Author

Listed:
  • Larsen Klaus

    (Hvidovre Hospital)

  • Petersen Janne

    (Hvdiovre Hospital)

  • Bernstein Inge

    (Hvidovre Hospital)

  • Nilbert Mef

    (Hvidovre Hospital)

Abstract

Anticipation, i.e. a decreasing age-at-onset in subsequent generations has been observed in a number of genetically triggered diseases. The impact of anticipation is generally studied in affected parent-child pairs. These analyses are restricted to pairs in which both individuals have been affected and are sensitive to right truncation of the data. We propose a normal random effects model that allows for right-censored observations and includes covariates, and draw statistical inference based on the likelihood function.We applied the model to the hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome family cohort from the national Danish HNPCC register. Age-at-onset was analyzed in 824 individuals from 2-4 generations in 125 families with proved disease-predisposing mutations. A significant effect from anticipation was identified with a mean of 3 years earlier age-at-onset per generation. The suggested model corrects for incomplete observations and considers families rather than affected pairs and thereby allows for studies of large sample sets, facilitates subgroup analyses and provides generation effect estimates.

Suggested Citation

  • Larsen Klaus & Petersen Janne & Bernstein Inge & Nilbert Mef, 2009. "A Parametric Model for Analyzing Anticipation in Genetically Predisposed Families," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-13, June.
  • Handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:26
    DOI: 10.2202/1544-6115.1424
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1424
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Rabinowitz & Qiong Yang, 1999. "Testing for Age-at-Onset Anticipation with Affected Parent-Child Pairs," Biometrics, The International Biometric Society, vol. 55(3), pages 834-838, September.
    2. van der Laan, Mark J., 1996. "Nonparametric Estimation of the Bivariate Survival Function with Truncated Data," Journal of Multivariate Analysis, Elsevier, vol. 58(1), pages 107-131, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip S. Boonstra & Bhramar Mukherjee & Jeremy M. G. Taylor & Mef Nilbert & Victor Moreno & Stephen B. Gruber, 2011. "Bayesian Modeling for Genetic Anticipation in Presence of Mutational Heterogeneity: A Case Study in Lynch Syndrome," Biometrics, The International Biometric Society, vol. 67(4), pages 1627-1637, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Pao-sheng, 2009. "An inverse-probability-weighted approach to the estimation of distribution function with doubly censored data," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1269-1276, May.
    2. Shen, Pao-sheng, 2010. "Semiparametric estimation of survival function when data are subject to dependent censoring and left truncation," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 161-168, February.
    3. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    4. Gürler, Ülkü & Prewitt, Kathryn, 2000. "Bivariate Density Estimation with Randomly Truncated Data," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 88-115, July.
    5. Hongsheng Dai & Marialuisa Restaino & Huan Wang, 2016. "A class of nonparametric bivariate survival function estimators for randomly censored and truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 736-751, October.
    6. Philip S. Boonstra & Bhramar Mukherjee & Jeremy M. G. Taylor & Mef Nilbert & Victor Moreno & Stephen B. Gruber, 2011. "Bayesian Modeling for Genetic Anticipation in Presence of Mutational Heterogeneity: A Case Study in Lynch Syndrome," Biometrics, The International Biometric Society, vol. 67(4), pages 1627-1637, December.
    7. Carla Moreira & Jacobo de Uña-Álvarez, 2010. "Bootstrapping the NPMLE for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 567-583.
    8. Daniel Rabinowitz & Qiong Yang, 1999. "Testing for Age-at-Onset Anticipation with Affected Parent-Child Pairs," Biometrics, The International Biometric Society, vol. 55(3), pages 834-838, September.
    9. Bella Vakulenko-Lagun & Micha Mandel & Yair Goldberg, 2017. "Nonparametric estimation in the illness-death model using prevalent data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 25-56, January.
    10. Jeongyong Kim & Karen Bandeen-Roche, 2019. "Parametric estimation of association in bivariate failure-time data subject to competing risks: sensitivity to underlying assumptions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 259-279, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.