IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v6y2007i1n36.html
   My bibliography  Save this article

Fully Bayesian Mixture Model for Differential Gene Expression: Simulations and Model Checks

Author

Listed:
  • Lewin Alex

    (Imperial, London)

  • Bochkina Natalia

    (The University of Edinburgh)

  • Richardson Sylvia

    (Imperial, London)

Abstract

We present a Bayesian hierarchical model for detecting differentially expressed genes using a mixture prior on the parameters representing differential effects. We formulate an easily interpretable 3-component mixture to classify genes as over-expressed, under-expressed and non-differentially expressed, and model gene variances as exchangeable to allow for variability between genes. We show how the proportion of differentially expressed genes, and the mixture parameters, can be estimated in a fully Bayesian way, extending previous approaches where this proportion was fixed and empirically estimated. Good estimates of the false discovery rates are also obtained.Different parametric families for the mixture components can lead to quite different classifications of genes for a given data set. Using Affymetrix data from a knock out and wildtype mice experiment, we show how predictive model checks can be used to guide the choice between possible mixture priors. These checks show that extending the mixture model to allow extra variability around zero instead of the usual point mass null fits the data better.A software package for R is available.

Suggested Citation

  • Lewin Alex & Bochkina Natalia & Richardson Sylvia, 2007. "Fully Bayesian Mixture Model for Differential Gene Expression: Simulations and Model Checks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 6(1), pages 1-28, December.
  • Handle: RePEc:bpj:sagmbi:v:6:y:2007:i:1:n:36
    DOI: 10.2202/1544-6115.1314
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1314
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfo' Marco & Farcomeni Alessio & Tardella Luca, 2011. "A Three Component Latent Class Model for Robust Semiparametric Gene Discovery," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-19, January.
    2. Vinícius Diniz Mayrink & Flávio B. Gonçalves, 2020. "Identifying atypically expressed chromosome regions using RNA-Seq data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 619-649, September.
    3. Zoé van Havre & Nicole White & Judith Rousseau & Kerrie Mengersen, 2015. "Overfitting Bayesian Mixture Models with an Unknown Number of Components," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    4. Vinícius Diniz Mayrink & Flávio Bambirra Gonçalves, 2017. "A Bayesian hidden Markov mixture model to detect overexpressed chromosome regions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 387-412, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:6:y:2007:i:1:n:36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.