IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v4y2005i1n29.html
   My bibliography  Save this article

Empirical Bayes and Resampling Based Multiple Testing Procedure Controlling Tail Probability of the Proportion of False Positives

Author

Listed:
  • van der Laan Mark J.

    (Division of Biostatistics, School of Public Health, University of California, Berkeley)

  • Birkner Merrill D.

    (University of California, Berkeley)

  • Hubbard Alan E.

    (University of California, Berkeley)

Abstract

Simultaneously testing a collection of null hypotheses about a data generating distribution based on a sample of independent and identically distributed observations is a fundamental and important statistical problem involving many applications. In this article we propose a new re-sampling based multiple testing procedure asymptotically controlling the probability that the proportion of false positives among the set of rejections exceeds q at level alpha, where q and alpha are user supplied numbers. The procedure involves 1) specifying a conditional distribution for a guessed set of true null hypotheses, given the data, which asymptotically is degenerate at the true set of null hypotheses, and 2) specifying a generally valid null distribution for the vector of test-statistics proposed in Pollard & van der Laan (2003), and generalized in our subsequent article Dudoit, van der Laan, & Pollard (2004), van der Laan, Dudoit, & Pollard (2004), and van der Laan, Dudoit, & Pollard (2004b). Ingredient 1) is established by fitting the empirical Bayes two component mixture model (Efron (2001b)) to the data to obtain an upper bound for marginal posterior probabilities of the null being true, given the data. We establish the finite sample rational behind our proposal, and prove that this new multiple testing procedure asymptotically controls the wished tail probability for the proportion of false positives under general data generating distributions. In addition, we provide simulation studies establishing that this method is generally more powerful in finite samples than our previously proposed augmentation multiple testing procedure (van der Laan, Dudoit, & Pollard (2004b)) and competing procedures from the literature. Finally, we illustrate our methodology with a data analysis.

Suggested Citation

  • van der Laan Mark J. & Birkner Merrill D. & Hubbard Alan E., 2005. "Empirical Bayes and Resampling Based Multiple Testing Procedure Controlling Tail Probability of the Proportion of False Positives," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, October.
  • Handle: RePEc:bpj:sagmbi:v:4:y:2005:i:1:n:29
    DOI: 10.2202/1544-6115.1143
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1143
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pallavi Basu & Luella Fu & Alessio Saretto & Wenguang Sun, 2021. "Empirical Bayes Control of the False Discovery Exceedance," Working Papers 2115, Federal Reserve Bank of Dallas.
    2. Joseph P. Romano & Michael Wolf, 2008. "Balanced Control of Generalized Error Rates," IEW - Working Papers 379, Institute for Empirical Research in Economics - University of Zurich.
    3. Wang, Li & Xu, Xingzhong, 2012. "Step-up procedure controlling generalized family-wise error rate," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 775-782.
    4. Schumi Jennifer & DiRienzo A. Gregory & DeGruttola Victor, 2008. "Testing for Associations with Missing High-Dimensional Categorical Covariates," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-19, September.
    5. Alessio Farcomeni, 2009. "Generalized Augmentation to Control the False Discovery Exceedance in Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 501-517, September.
    6. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.
    7. Nyangoma Stephen O. & Collins Stuart I. & Altman Douglas G. & Johnson Philip & Billingham Lucinda J., 2012. "Sample Size Calculations for Designing Clinical Proteomic Profiling Studies Using Mass Spectrometry," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-42, February.
    8. Ayoung Jeong & Medea Imboden & Akram Ghantous & Alexei Novoloaca & Anne-Elie Carsin & Manolis Kogevinas & Christian Schindler & Gianfranco Lovison & Zdenko Herceg & Cyrille Cuenin & Roel Vermeulen & D, 2019. "DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non-Atopic Asthma," IJERPH, MDPI, vol. 16(4), pages 1-15, February.
    9. Christina C. Bartenschlager & Michael Krapp, 2015. "Theorie und Methoden multipler statistischer Vergleiche," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(2), pages 107-129, November.
    10. Mathur, Maya B & VanderWeele, Tyler, 2018. "Statistical methods for evidence synthesis," Thesis Commons kd6ja, Center for Open Science.
    11. Park, DoHwan & Park, Junyong & Zhong, Xiaosong & Sadelain, Michel, 2011. "Estimation of empirical null using a mixture of normals and its use in local false discovery rate," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2421-2432, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:4:y:2005:i:1:n:29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.