IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v17y2018i3p21n2.html
   My bibliography  Save this article

Multi-locus data distinguishes between population growth and multiple merger coalescents

Author

Listed:
  • Koskela Jere

    (Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK)

Abstract

We introduce a low dimensional function of the site frequency spectrum that is tailor-made for distinguishing coalescent models with multiple mergers from Kingman coalescent models with population growth, and use this function to construct a hypothesis test between these model classes. The null and alternative sampling distributions of the statistic are intractable, but its low dimensionality renders them amenable to Monte Carlo estimation. We construct kernel density estimates of the sampling distributions based on simulated data, and show that the resulting hypothesis test dramatically improves on the statistical power of a current state-of-the-art method. A key reason for this improvement is the use of multi-locus data, in particular averaging observed site frequency spectra across unlinked loci to reduce sampling variance. We also demonstrate the robustness of our method to nuisance and tuning parameters. Finally we show that the same kernel density estimates can be used to conduct parameter estimation, and argue that our method is readily generalisable for applications in model selection, parameter inference and experimental design.

Suggested Citation

  • Koskela Jere, 2018. "Multi-locus data distinguishes between population growth and multiple merger coalescents," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(3), pages 1-21, June.
  • Handle: RePEc:bpj:sagmbi:v:17:y:2018:i:3:p:21:n:2
    DOI: 10.1515/sagmb-2017-0011
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2017-0011
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2017-0011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hobolth, Asger & Rivas-González, Iker & Bladt, Mogens & Futschik, Andreas, 2024. "Phase-type distributions in mathematical population genetics: An emerging framework," Theoretical Population Biology, Elsevier, vol. 157(C), pages 14-32.
    2. Freund, Fabian & Siri-Jégousse, Arno, 2021. "The impact of genetic diversity statistics on model selection between coalescents," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:17:y:2018:i:3:p:21:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.