IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v12y2013i6p723-742n5.html
   My bibliography  Save this article

Modeling, simulation and analysis of methylation profiles from reduced representation bisulfite sequencing experiments

Author

Listed:
  • Lacey Michelle R.

    (Department of Mathematics, Tulane University, New Orleans, LA, USA Tulane Cancer Center, Tulane Health Sciences Center, New Orleans, LA, USA)

  • Baribault Carl

    (Tulane Cancer Center, Tulane Health Sciences Center, New Orleans, LA, USA)

  • Ehrlich Melanie

    (Tulane Cancer Center, Tulane Health Sciences Center, New Orleans, LA, USA Program in Human Genetics, Tulane Health Sciences Center, New Orleans, LA, USA)

Abstract

The ENCODE project has funded the generation of a diverse collection of methylation profiles using reduced representation bisulfite sequencing (RRBS) technology, enabling the analysis of epigenetic variation on a genomic scale at single-site resolution. A standard application of RRBS experiments is in the location of differentially methylated regions (DMRs) between two sets of samples. Despite numerous publications reporting DMRs identified from RRBS datasets, there have been no formal analyses of the effects of experimental and biological factors on the performance of existing or newly developed analytical methods. These factors include variable read coverage, differing group sample sizes across genomic regions, uneven spacing between CpG dinucleotide sites, and correlation in methylation levels among sites in close proximity. To better understand the interplay among technical and biological variables in the analysis of RRBS methylation profiles, we have developed an algorithm for the generation of experimentally realistic RRBS datasets. Applying insights derived from our simulation studies, we present a novel procedure that can identify DMRs spanning as few as three CpG sites with both high sensitivity and specificity. Using RRBS data from muscle vs. non-muscle cell cultures as an example, we demonstrate that our method reveals many more DMRs that are likely to be of biological significance than previous methods.

Suggested Citation

  • Lacey Michelle R. & Baribault Carl & Ehrlich Melanie, 2013. "Modeling, simulation and analysis of methylation profiles from reduced representation bisulfite sequencing experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 723-742, December.
  • Handle: RePEc:bpj:sagmbi:v:12:y:2013:i:6:p:723-742:n:5
    DOI: 10.1515/sagmb-2013-0027
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2013-0027
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2013-0027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryan Lister & Mattia Pelizzola & Robert H. Dowen & R. David Hawkins & Gary Hon & Julian Tonti-Filippini & Joseph R. Nery & Leonard Lee & Zhen Ye & Que-Minh Ngo & Lee Edsall & Jessica Antosiewicz-Bourg, 2009. "Human DNA methylomes at base resolution show widespread epigenomic differences," Nature, Nature, vol. 462(7271), pages 315-322, November.
    2. Kojadinovic, Ivan & Yan, Jun, 2010. "Modeling Multivariate Distributions with Continuous Margins Using the copula R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i09).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhi & Mukherjee, Amitava & Zhang, Jiujun, 2021. "Some robust approaches based on copula for monitoring bivariate processes and component-wise assessment," European Journal of Operational Research, Elsevier, vol. 289(1), pages 177-196.
    2. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.
    3. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    4. Okhrin, Ostap & Ristig, Alexander, 2012. "Hierarchical Archimedean copulae: The HAC package," SFB 649 Discussion Papers 2012-036, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    6. Zengyu Shao & Jiuwei Lu & Nelli Khudaverdyan & Jikui Song, 2024. "Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Kalema, George & Molenberghs, Geert, 2016. "Generating Correlated and/or Overdispersed Count Data: A SAS Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(c01).
    8. Berghaus, Betina & Segers, Johan, 2017. "Weak convergence of the weighted empirical beta copula process," LIDAM Discussion Papers ISBA 2017015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Xuelong Yao & Zongyang Lu & Zhanying Feng & Lei Gao & Xin Zhou & Min Li & Suijuan Zhong & Qian Wu & Zhenbo Liu & Haofeng Zhang & Zeyuan Liu & Lizhi Yi & Tao Zhou & Xudong Zhao & Jun Zhang & Yong Wang , 2022. "Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management," Energy Economics, Elsevier, vol. 42(C), pages 332-342.
    11. Punzo, Antonio & Bagnato, Luca, 2022. "Dimension-wise scaled normal mixtures with application to finance and biometry," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    12. Rakesh Chettier & Lesa Nelson & James W Ogilvie & Hans M Albertsen & Kenneth Ward, 2015. "Haplotypes at LBX1 Have Distinct Inheritance Patterns with Opposite Effects in Adolescent Idiopathic Scoliosis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-11, February.
    13. Ghislain Verdier, 2024. "Goodness-of-fit procedure for gamma processes," Computational Statistics, Springer, vol. 39(5), pages 2623-2650, July.
    14. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    15. Xue Yue & Zhiyuan Xie & Moran Li & Kai Wang & Xiaojing Li & Xiaoqing Zhang & Jian Yan & Yimeng Yin, 2022. "Simultaneous profiling of histone modifications and DNA methylation via nanopore sequencing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Anyou Wang & Ying Du & Qianchuan He & Chunxiao Zhou, 2013. "A Quantitative System for Discriminating Induced Pluripotent Stem Cells, Embryonic Stem Cells and Somatic Cells," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-10, February.
    17. Enkelejd Hashorva & Simone A. Padoan & Stefano Rizzelli, 2021. "Multivariate extremes over a random number of observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 845-880, September.
    18. Steve Hyun & Jimin Lee & Jong-Min Kim & Chulhee Jun, 2019. "What Coins Lead in the Cryptocurrency Market: Using Copula and Neural Networks Models," JRFM, MDPI, vol. 12(3), pages 1-14, August.
    19. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    20. Cole, Matthew A. & Elliott, Robert J.R. & Occhiali, Giovanni & Strobl, Eric, 2018. "Power outages and firm performance in Sub-Saharan Africa," Journal of Development Economics, Elsevier, vol. 134(C), pages 150-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:12:y:2013:i:6:p:723-742:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.