A Model-Based Analysis to Infer the Functional Content of a Gene List
Author
Abstract
Suggested Citation
DOI: 10.2202/1544-6115.1716
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liang, Kun & Nettleton, Dan, 2010. "A Hidden Markov Model Approach to Testing Multiple Hypotheses on a Tree-Transformed Gene Ontology Graph," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1444-1454.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ting Wang & Jiancang Zhuang & Kazushige Obara & Hiroshi Tsuruoka, 2017. "Hidden Markov modelling of sparse time series from non-volcanic tremor observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 691-715, August.
- Peng, Liuhua & Qu, Long & Nettleton, Dan, 2021. "Variable importance assessments and backward variable selection for multi-sample problems," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Goeman Jelle J. & Finos Livio, 2012. "The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-18, January.
- Tingting Cui & Pengfei Wang & Wensheng Zhu, 2021. "Covariate-adjusted multiple testing in genome-wide association studies via factorial hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de EstadÃstica e Investigación Operativa, vol. 30(3), pages 737-757, September.
- Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.
- Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "A Hierarchical Semiparametric Model for Incorporating Intergene Information for Analysis of Genomic Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1168-1177, December.
More about this item
Keywords
probabilistic graphical modeling; role model; gene-set analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:11:y:2012:i:2:n:9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.