IDEAS home Printed from https://ideas.repec.org/a/bpj/jtsmet/v10y2018i2p22n1.html
   My bibliography  Save this article

What Proportion of Time is a Particular Market Inefficient? … A Method for Analysing the Frequency of Market Efficiency when Equity Prices Follow Threshold Autoregressions

Author

Listed:
  • Ahmed Muhammad Farid

    (Faculty of Economics, Selwyn College, University of Cambridge, Sidgwick Avenue Cambridge, Cambridge, CB3 9DD, UK)

  • Satchell Stephen

    (University of Sydney, Camperdown, NSW 2006, Australia)

Abstract

We assume that equity returns follow multi-state threshold autoregressions and generalize existing results for threshold autoregressive models presented in Knight and Satchell 2011. “Some new results for threshold AR(1) models,” Journal of Time Series Econometrics 3(2011):1–42 and Knight, Satchell, and Srivastava (2014) for the existence of a stationary process and the conditions necessary for the existence of a mean and a variance; we also present formulae for these moments. Using a simulation study, we explore what these results entail with respect to the impact they can have on tests for detecting bubbles or market efficiency. We find that bubbles are easier to detect in processes where a stationary distribution does not exist. Furthermore, we explore how threshold autoregressive models with i.i.d trigger variables may enable us to identify how often asset markets are inefficient. We find, unsurprisingly, that the fraction of time spent in an efficient state depends upon the full specification of the model; the notion of how efficient a market is, in this context at least, a model-dependent concept. However, our methodology allows us to compare efficiency across different asset markets.

Suggested Citation

  • Ahmed Muhammad Farid & Satchell Stephen, 2018. "What Proportion of Time is a Particular Market Inefficient? … A Method for Analysing the Frequency of Market Efficiency when Equity Prices Follow Threshold Autoregressions," Journal of Time Series Econometrics, De Gruyter, vol. 10(2), pages 1-22, July.
  • Handle: RePEc:bpj:jtsmet:v:10:y:2018:i:2:p:22:n:1
    DOI: 10.1515/jtse-2016-0021
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jtse-2016-0021
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jtse-2016-0021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1043-1078, November.
    2. Marsh, Terry A & Merton, Robert C, 1986. "Dividend Variability and Variance Bounds Tests for the Rationality ofStock Market Prices," American Economic Review, American Economic Association, vol. 76(3), pages 483-498, June.
    3. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    4. Evans, George W, 1991. "Pitfalls in Testing for Explosive Bubbles in Asset Prices," American Economic Review, American Economic Association, vol. 81(4), pages 922-930, September.
    5. Knight John & Satchell Stephen, 2011. "Some New Results for Threshold AR(1) Models," Journal of Time Series Econometrics, De Gruyter, vol. 3(2), pages 1-42, April.
    6. Knight, John & Satchell, Stephen & Srivastava, Nandini, 2014. "Steady state distributions for models of locally explosive regimes: Existence and econometric implications," Economic Modelling, Elsevier, vol. 41(C), pages 281-288.
    7. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Farid Ahmed & Stephen Satchell, 2019. "Some Dynamic and Steady-State Properties of Threshold Auto-Regressions with Applications to Stationarity and Local Explosivity," JRFM, MDPI, vol. 12(3), pages 1-18, July.
    2. Galyna Grynkiv & Lars Stentoft, 2018. "Stationary Threshold Vector Autoregressive Models," JRFM, MDPI, vol. 11(3), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Farid Ahmed & Stephen Satchell, 2019. "Some Dynamic and Steady-State Properties of Threshold Auto-Regressions with Applications to Stationarity and Local Explosivity," JRFM, MDPI, vol. 12(3), pages 1-18, July.
    2. Gaia Garino & Lucio Sarno, 2004. "Speculative Bubbles in U.K. House Prices: Some New Evidence," Southern Economic Journal, John Wiley & Sons, vol. 70(4), pages 777-795, April.
    3. Dmitry Kulikov, 2012. "Testing for Rational Speculative Bubbles on the Estonian Stock Market," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 4(1).
    4. Brian M. Lucey & Fergal A. O’Connor, 2013. "Do bubbles occur in the gold price? An investigation of gold lease rates and Markov Switching models," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 13(3), pages 53-63, September.
    5. Galyna Grynkiv & Lars Stentoft, 2018. "Stationary Threshold Vector Autoregressive Models," JRFM, MDPI, vol. 11(3), pages 1-23, August.
    6. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Konstantakis, Konstantinos N., 2016. "Non-linearities in financial bubbles: Theory and Bayesian evidence from S&P500," Journal of Financial Stability, Elsevier, vol. 24(C), pages 61-70.
    7. Assaf, Ata, 2018. "Testing for bubbles in the art markets: An empirical investigation," Economic Modelling, Elsevier, vol. 68(C), pages 340-355.
    8. Brian Lucey & Fergal A. O'connor, 2012. "Do Bubbles occur in Gold Prices? Evidence from Gold Lease Rates and Markov Switching Models," The Institute for International Integration Studies Discussion Paper Series iiisdp418, IIIS.
    9. Wang, Xiao-Qing & Wu, Tong & Zhong, Huaming & Su, Chi-Wei, 2023. "Bubble behaviors in nickel price: What roles do geopolitical risk and speculation play?," Resources Policy, Elsevier, vol. 83(C).
    10. Sarah Arndt & Zeno Enders, 2023. "The Transmission of Supply Shocks in Different Inflation Regimes," CESifo Working Paper Series 10839, CESifo.
    11. Michael Artis, 1999. "The UK and EMU," Palgrave Macmillan Books, in: David Cobham & George Zis (ed.), From EMS to EMU: 1979 to 1999 and Beyond, chapter 7, pages 161-180, Palgrave Macmillan.
    12. Xiang Lin & Martin Thomas Falk, 2022. "Nordic stock market performance of the travel and leisure industry during the first wave of Covid-19 pandemic," Tourism Economics, , vol. 28(5), pages 1240-1257, August.
    13. Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.
    14. Peter McAdam, 2007. "USA, Japan and the Euro Area: Comparing Business-Cycle Features," International Review of Applied Economics, Taylor & Francis Journals, vol. 21(1), pages 135-156.
    15. Cavicchioli, Maddalena, 2024. "A matrix unified framework for deriving various impulse responses in Markov switching VAR: Evidence from oil and gas markets," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    16. Franck Sédillot, 2001. "La pente des taux contient-elle de l'information sur l'activité économique future ?," Economie & Prévision, La Documentation Française, vol. 147(1), pages 141-157.
    17. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    18. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    19. Horváth, Lajos & Li, Hemei & Liu, Zhenya, 2022. "How to identify the different phases of stock market bubbles statistically?," Finance Research Letters, Elsevier, vol. 46(PA).
    20. Timothy Besley & Hannes Mueller, 2012. "Estimating the Peace Dividend: The Impact of Violence on House Prices in Northern Ireland," American Economic Review, American Economic Association, vol. 102(2), pages 810-833, April.

    More about this item

    Keywords

    market efficiency; bubbles; threshold auto-regressions;
    All these keywords.

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:10:y:2018:i:2:p:22:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.