IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v8y2012i2n7.html
   My bibliography  Save this article

Parsing the Relationship between Baserunning and Batting Abilities within Lineups

Author

Listed:
  • Baumer Ben S.

    (CUNY Graduate School and University Center)

  • Piette James

    (University of Pennsylvania)

  • Null Brad

    (Stanford University)

Abstract

A baseball team's offensive prowess is a function of two types of abilities: batting and baserunning. While each has been studied extensively in isolation, the effects of their interaction is not well understood. We model offensive output as a scalar function f of an individual player's batting and baserunning profile z. Each of these profiles is in turn estimated from Retrosheet data using heirarchical Bayesian models. We then use the SimulOutCome simulation engine as a method to generate values of f(z) over a fine grid of points. Finally, for each of several methods of taking the extra base, we graphically depict the surface f(z) over changes in the probability of advancing via that method. This framework allows us to draw conclusions both about optimal baserunning strategies in general, and about how particular offensive profiles affect a player's optimal baserunning strategy. We present many informative visualizations and analyze specific aspects of several well-known Major League players.

Suggested Citation

  • Baumer Ben S. & Piette James & Null Brad, 2012. "Parsing the Relationship between Baserunning and Batting Abilities within Lineups," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(2), pages 1-19, June.
  • Handle: RePEc:bpj:jqsprt:v:8:y:2012:i:2:n:7
    DOI: 10.1515/1559-0410.1429
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1559-0410.1429
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1559-0410.1429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albert James, 2006. "Pitching Statistics, Talent and Luck, and the Best Strikeout Seasons of All-Time," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(1), pages 1-32, January.
    2. Null Brad, 2009. "Modeling Baseball Player Ability with a Nested Dirichlet Distribution," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-38, May.
    3. Baumer Ben S, 2009. "Using Simulation to Estimate the Impact of Baserunning Ability in Baseball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beaudoin David, 2013. "Various applications to a more realistic baseball simulator," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(3), pages 271-283, September.
    2. Piette James & Jensen Shane T., 2012. "Estimating Fielding Ability in Baseball Players Over Time," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-36, October.
    3. McShane Blakeley B. & Braunstein Alexander & Piette James & Jensen Shane T., 2011. "A Hierarchical Bayesian Variable Selection Approach to Major League Baseball Hitting Metrics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-26, October.
    4. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    5. Albert Jim, 2013. "Looking at spacings to assess streakiness," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(2), pages 151-163, June.
    6. Albert Jim, 2016. "Improved component predictions of batting and pitching measures," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(2), pages 73-85, June.
    7. Gerber Eric A. E. & Craig Bruce A., 2021. "A mixed effects multinomial logistic-normal model for forecasting baseball performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(3), pages 221-239, September.
    8. Albert Jim, 2010. "Using the Count to Measure Pitching Performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(4), pages 1-30, October.
    9. Seong W. Kim & Sabina Shahin & Hon Keung Tony Ng & Jinheum Kim, 2021. "Binary segmentation procedures using the bivariate binomial distribution for detecting streakiness in sports data," Computational Statistics, Springer, vol. 36(3), pages 1821-1843, September.
    10. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    11. Phillips Andrew J. K., 2014. "Uncovering Formula One driver performances from 1950 to 2013 by adjusting for team and competition effects," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 261-278, June.
    12. Sumit Sarkar & Sooraj Kamath, 2023. "Does luck play a role in the determination of the rank positions in football leagues? A study of Europe’s ‘big five’," Annals of Operations Research, Springer, vol. 325(1), pages 245-260, June.
    13. Łukasz Szczepański & Ian McHale, 2016. "Beyond completion rate: evaluating the passing ability of footballers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 513-533, February.
    14. Piette James & Braunstein Alexander & McShane Blakeley B & Jensen Shane T., 2010. "A Point-Mass Mixture Random Effects Model for Pitching Metrics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-17, July.
    15. Null Brad, 2009. "Modeling Baseball Player Ability with a Nested Dirichlet Distribution," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-38, May.
    16. Vock David Michael & Vock Laura Frances Boehm, 2018. "Estimating the effect of plate discipline using a causal inference framework: an application of the G-computation algorithm," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(2), pages 37-56, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:8:y:2012:i:2:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.