IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v12y2016i2p73-85n4.html
   My bibliography  Save this article

Improved component predictions of batting and pitching measures

Author

Listed:
  • Albert Jim

    (Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH, 43403, USA)

Abstract

Standard measures of batting performance such as batting average and on-base percentage can be decomposed into component rates such as strikeout rates and home run rates. The likelihood of hitting data for a group of players can be expressed as a product of likelihoods of the component probabilities and this motivates the use of Bayesian random effects models to estimate the groups of component rates. By combining the separate component rates, the aggregate predictions of batting performance for subsequent seasons improve upon standard shrinkage methods. This “separate and aggregate” approach is also illustrated for estimating on-base probabilities and fielding independent pitching (FIP) abilities of pitchers.

Suggested Citation

  • Albert Jim, 2016. "Improved component predictions of batting and pitching measures," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(2), pages 73-85, June.
  • Handle: RePEc:bpj:jqsprt:v:12:y:2016:i:2:p:73-85:n:4
    DOI: 10.1515/jqas-2015-0063
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2015-0063
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2015-0063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albert James, 2006. "Pitching Statistics, Talent and Luck, and the Best Strikeout Seasons of All-Time," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(1), pages 1-32, January.
    2. Neal Dan & Tan James & Hao Feng & Wu Samuel S, 2010. "Simply Better: Using Regression Models to Estimate Major League Batting Averages," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-14, July.
    3. Piette James & Braunstein Alexander & McShane Blakeley B & Jensen Shane T., 2010. "A Point-Mass Mixture Random Effects Model for Pitching Metrics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-17, July.
    4. McShane Blakeley B. & Braunstein Alexander & Piette James & Jensen Shane T., 2011. "A Hierarchical Bayesian Variable Selection Approach to Major League Baseball Hitting Metrics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos-Fernandez Edgar & Wu Paul & Mengersen Kerrie L., 2019. "Bayesian statistics meets sports: a comprehensive review," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 289-312, December.
    2. Gerber Eric A. E. & Craig Bruce A., 2021. "A mixed effects multinomial logistic-normal model for forecasting baseball performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(3), pages 221-239, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos-Fernandez Edgar & Wu Paul & Mengersen Kerrie L., 2019. "Bayesian statistics meets sports: a comprehensive review," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 289-312, December.
    2. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    3. Albert Jim, 2013. "Looking at spacings to assess streakiness," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(2), pages 151-163, June.
    4. Baumer Ben S. & Piette James & Null Brad, 2012. "Parsing the Relationship between Baserunning and Batting Abilities within Lineups," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(2), pages 1-19, June.
    5. Albert Jim, 2010. "Using the Count to Measure Pitching Performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(4), pages 1-30, October.
    6. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    7. Phillips Andrew J. K., 2014. "Uncovering Formula One driver performances from 1950 to 2013 by adjusting for team and competition effects," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 261-278, June.
    8. Sumit Sarkar & Sooraj Kamath, 2023. "Does luck play a role in the determination of the rank positions in football leagues? A study of Europe’s ‘big five’," Annals of Operations Research, Springer, vol. 325(1), pages 245-260, June.
    9. Łukasz Szczepański & Ian McHale, 2016. "Beyond completion rate: evaluating the passing ability of footballers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 513-533, February.
    10. Piette James & Braunstein Alexander & McShane Blakeley B & Jensen Shane T., 2010. "A Point-Mass Mixture Random Effects Model for Pitching Metrics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-17, July.
    11. Null Brad, 2009. "Modeling Baseball Player Ability with a Nested Dirichlet Distribution," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-38, May.
    12. Vock David Michael & Vock Laura Frances Boehm, 2018. "Estimating the effect of plate discipline using a causal inference framework: an application of the G-computation algorithm," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(2), pages 37-56, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:12:y:2016:i:2:p:73-85:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.