IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v5y2009i3n8.html
   My bibliography  Save this article

NCAA Tournament Games: The Real Nitty-Gritty

Author

Listed:
  • Coleman Jay

    (University of North Florida)

  • Lynch Allen K

    (Mercer University)

Abstract

The NCAA Division I Men's Basketball Committee annually selects its national championship tournament's at-large invitees, and assigns seeds to all participants. As part of its deliberations, the Committee is provided a so-called "nitty-gritty report" for each team, containing numerous team performance statistics. Many elements of this report receive a great deal of attention by the media and fans as the tournament nears, including a team's Ratings Percentage Index (or RPI), overall record, conference record, non-conference record, strength of schedule, record in its last 10 games, etc. However, few previous studies have evaluated the degree to which these factors are related to whether a team actually wins games once the tournament begins. Using nitty-gritty information for the participants in the 638 tournament games during the 10 seasons from 1999 through 2008, we use stepwise binary logit regression to build a model that includes only eight of the 32 nitty-gritty factors we examined. We find that in some cases factors that receive a great deal of attention are not related to game results, at least in the presence of the more highly related set of factors included in the model.

Suggested Citation

  • Coleman Jay & Lynch Allen K, 2009. "NCAA Tournament Games: The Real Nitty-Gritty," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(3), pages 1-27, July.
  • Handle: RePEc:bpj:jqsprt:v:5:y:2009:i:3:n:8
    DOI: 10.2202/1559-0410.1165
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1559-0410.1165
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1559-0410.1165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. West Brady T., 2008. "A Simple and Flexible Rating Method for Predicting Success in the NCAA Basketball Tournament: Updated Results from 2007," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(2), pages 1-18, April.
    2. Boulier, Bryan L. & Stekler, H. O., 1999. "Are sports seedings good predictors?: an evaluation," International Journal of Forecasting, Elsevier, vol. 15(1), pages 83-91, February.
    3. Harville D.A., 2003. "The Selection or Seeding of College Basketball or Football Teams for Postseason Competition," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 17-27, January.
    4. West Brady T, 2006. "A Simple and Flexible Rating Method for Predicting Success in the NCAA Basketball Tournament," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(3), pages 1-16, July.
    5. Caudill, Steven B., 2003. "Predicting discrete outcomes with the maximum score estimator: the case of the NCAA men's basketball tournament," International Journal of Forecasting, Elsevier, vol. 19(2), pages 313-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morris Tracy L. & Bokhari Faryal H., 2012. "The Dreaded Middle Seeds - Are They the Worst Seeds in the NCAA Basketball Tournament?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(2), pages 1-13, June.
    2. Grimshaw Scott D. & Sabin R. Paul & Willes Keith M., 2013. "Analysis of the NCAA Men’s Final Four TV audience," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(2), pages 115-126, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Jay Coleman & J. Michael DuMond & Allen K. Lynch, 2010. "Evidence of bias in NCAA tournament selection and seeding," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 31(7), pages 431-452.
    2. Stekler Herman O. & Klein Andrew, 2012. "Predicting the Outcomes of NCAA Basketball Championship Games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-10, March.
    3. Ludden Ian G. & Khatibi Arash & King Douglas M. & Jacobson Sheldon H., 2020. "Models for generating NCAA men’s basketball tournament bracket pools," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(1), pages 1-15, March.
    4. repec:ebl:ecbull:v:4:y:2007:i:34:p:1-7 is not listed on IDEAS
    5. Grimshaw Scott D. & Sabin R. Paul & Willes Keith M., 2013. "Analysis of the NCAA Men’s Final Four TV audience," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(2), pages 115-126, June.
    6. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    7. del Corral, Julio & Prieto-Rodríguez, Juan, 2010. "Are differences in ranks good predictors for Grand Slam tennis matches?," International Journal of Forecasting, Elsevier, vol. 26(3), pages 551-563, July.
    8. Manner Hans, 2016. "Modeling and forecasting the outcomes of NBA basketball games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 31-41, March.
    9. Nicholas G. Hall & Chris N. Potts, 2012. "A Proposal for Redesign of the FedEx Cup Playoff Series on the PGA TOUR," Interfaces, INFORMS, vol. 42(2), pages 166-179, April.
    10. Bryan Clair & David Letscher, 2007. "Optimal Strategies for Sports Betting Pools," Operations Research, INFORMS, vol. 55(6), pages 1163-1177, December.
    11. Morris Tracy L. & Bokhari Faryal H., 2012. "The Dreaded Middle Seeds - Are They the Worst Seeds in the NCAA Basketball Tournament?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(2), pages 1-13, June.
    12. Paul Kvam & Joel S. Sokol, 2006. "A logistic regression/Markov chain model for NCAA basketball," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 788-803, December.
    13. Daniel C. Hickman & Andrew G. Meyer, 2017. "Does Athletic Success Influence Persistence At Higher Education Institutions? New Evidence Using Panel Data," Contemporary Economic Policy, Western Economic Association International, vol. 35(4), pages 658-676, October.
    14. Vaughan Williams, Leighton & Stekler, Herman O., 2010. "Sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 445-447, July.
      • Herman O. Stekler, 2007. "Sports Forecasting," Working Papers 2007-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Jan 2007.
    15. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    16. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    17. Andrew J. Leach, 2003. "SubGame, set and match. Identifying Incentive Response in a Tournament," Cahiers de recherche 04-02, HEC Montréal, Institut d'économie appliquée.
    18. Caudill, Steven B., 2003. "Predicting discrete outcomes with the maximum score estimator: the case of the NCAA men's basketball tournament," International Journal of Forecasting, Elsevier, vol. 19(2), pages 313-317.
    19. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    20. Michael Cary & Heather Stephens, 2023. "Gendered Consequences of COVID-19 Among Professional Tennis Players," Journal of Sports Economics, , vol. 24(2), pages 241-266, February.
    21. Kovalchik Stephanie Ann, 2016. "Searching for the GOAT of tennis win prediction," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(3), pages 127-138, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:5:y:2009:i:3:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.