IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v11y2015i3p145-153n4.html
   My bibliography  Save this article

The implied volatility of a sports game

Author

Listed:
  • Polson Nicholas G.

    (University of Chicago Booth School of Business, Chicago, IL, USA)

  • Stern Hal S.

    (Department of Statistics, University of California, Irvine, CA, USA)

Abstract

In this paper we provide a method for calculating the implied volatility of the outcome of a sports game. We base our analysis on Stern’s stochastic model for the evolution of sports scores (Stern, H. S. 1994. “A Brownian Motion Model for the Progress of Sports Scores.” Journal of the American Statistical Association 89:1128–1134.). Using bettors’ point spread and moneyline odds, we extend the model to calculate the market-implied volatility of the game’s score. The model can also be used to calculate the time-varying implied volatility during the game using inputs from real-time, online betting and to identify betting opportunities. We illustrate our methodology on data from Super Bowl XLVII between the Baltimore Ravens and the San Francisco 49ers and show how the market-implied volatility of the outcome varied as the game progressed.

Suggested Citation

  • Polson Nicholas G. & Stern Hal S., 2015. "The implied volatility of a sports game," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(3), pages 145-153, September.
  • Handle: RePEc:bpj:jqsprt:v:11:y:2015:i:3:p:145-153:n:4
    DOI: 10.1515/jqas-2014-0095
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2014-0095
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2014-0095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Snowberg, Erik & Wolfers, Justin & Zitzewitz, Eric, 2013. "Prediction Markets for Economic Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 657-687, Elsevier.
    2. Singfat Chu, 2003. "Using Soccer Goals to Motivate the Poisson Process," INFORMS Transactions on Education, INFORMS, vol. 3(2), pages 64-70, January.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Avery, Christopher & Chevalier, Judith, 1999. "Identifying Investor Sentiment from Price Paths: The Case of Football Betting," The Journal of Business, University of Chicago Press, vol. 72(4), pages 493-521, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Guanhao & Polson Nicholas & Xu Jianeng, 2016. "The market for English Premier League (EPL) odds," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(4), pages 167-178, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Guanhao & Polson Nicholas & Xu Jianeng, 2016. "The market for English Premier League (EPL) odds," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(4), pages 167-178, December.
    2. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    3. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    4. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    5. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    6. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    7. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    8. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    9. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    10. John Driffill & Turalay Kenc & Martin Sola, 2013. "Real Options With Priced Regime-Switching Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-30.
    11. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    12. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    13. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    14. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    15. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    16. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    17. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    18. Mancini, Cecilia, 2008. "Large deviation principle for an estimator of the diffusion coefficient in a jump-diffusion process," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 869-879, May.
    19. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    20. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:11:y:2015:i:3:p:145-153:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.