IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v6y2018i1p85-96n6.html
   My bibliography  Save this article

Optimal Insurance-Package and Investment Problem for an Insurer

Author

Listed:
  • Sheng Delei

    (Department of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan, 030006, China)

  • Xing Linfang

    (Department of Foundational Courses, Tianjin Railway Technical and Vocational College, Tianjin, 300241, China)

Abstract

An insurance-package is a combination being tie-in at least two different categories of insurances with different underwriting-yield-rate. In this paper, the optimal insurance-package and investment problem is investigated by maximizing the insurer’s exponential utility of terminal wealth to find the optimal combination-share and investment strategy. Using the methods of stochastic analysis and stochastic optimal control, the Hamilton-Jacobi-Bellman (HJB) equations are established, the optimal strategy and the value function are obtained in closed form. By comparing with classical results, it shows that the insurance-package can enhance the utility of terminal wealth, meanwhile, reduce the insurer’s claim risk.

Suggested Citation

  • Sheng Delei & Xing Linfang, 2018. "Optimal Insurance-Package and Investment Problem for an Insurer," Journal of Systems Science and Information, De Gruyter, vol. 6(1), pages 85-96, February.
  • Handle: RePEc:bpj:jossai:v:6:y:2018:i:1:p:85-96:n:6
    DOI: 10.21078/JSSI-2018-085-12
    as

    Download full text from publisher

    File URL: https://doi.org/10.21078/JSSI-2018-085-12
    Download Restriction: no

    File URL: https://libkey.io/10.21078/JSSI-2018-085-12?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    2. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    3. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    4. Luo, Shangzhen & Taksar, Michael & Tsoi, Allanus, 2008. "On reinsurance and investment for large insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 434-444, February.
    5. Irgens, Christian & Paulsen, Jostein, 2004. "Optimal control of risk exposure, reinsurance and investments for insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 21-51, August.
    6. Bai, Lihua & Guo, Junyi, 2008. "Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 968-975, June.
    7. Yao, Dingjun & Yang, Hailiang & Wang, Rongming, 2016. "Optimal Dividend And Reinsurance Strategies With Financing And Liquidation Value," ASTIN Bulletin, Cambridge University Press, vol. 46(2), pages 365-399, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Lin & Zhang, Liming & Yao, Dingjun, 2017. "Optimal investment and reinsurance for an insurer under Markov-modulated financial market," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 7-19.
    2. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    3. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    4. Kun Wu & Weixing Wu, 2016. "Optimal Controls for a Large Insurance Under a CEV Model: Based on the Legendre Transform-Dual Method," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 167-178, December.
    5. Qicai Li & Mengdi Gu & Zhibing Liang, 2014. "Optimal excess-of-loss reinsurance and investment polices under the CEV model," Annals of Operations Research, Springer, vol. 223(1), pages 273-290, December.
    6. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    7. Liang, Zhibin & Yuen, Kam Chuen & Guo, Junyi, 2011. "Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 207-215, September.
    8. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    9. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    10. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    11. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    12. Nian Yao & Zhiming Yang, 2017. "Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model," Papers 1704.08234, arXiv.org.
    13. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    14. Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.
    15. Zilan Liu & Yijun Wang & Ya Huang & Jieming Zhou, 2022. "Optimal Time-Consistent Investment and Premium Control Strategies for Insurers with Constraint under the Heston Model," Mathematics, MDPI, vol. 10(7), pages 1-22, March.
    16. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    17. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    18. Peng, Xingchun & Hu, Yijun, 2013. "Optimal proportional reinsurance and investment under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 416-428.
    19. Ya Huang & Xiangqun Yang & Jieming Zhou, 2017. "Robust optimal investment and reinsurance problem for a general insurance company under Heston model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 305-326, April.
    20. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:6:y:2018:i:1:p:85-96:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.