IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v2y2014i2p97-110n1.html
   My bibliography  Save this article

On Complete Carbon Emission of China’s Industries Based on Input-Output Analysis

Author

Listed:
  • Qin Changcai

    (School of Economics and Business, Yantai University, Yantai264005, China)

  • Liu Shulin

    (School of International Trade and Economics, University of International Business and Economics, Beijing100029, China)

Abstract

This article establishes a useful analytical framework for complete carbon emission of the industries in China and then makes comparison on carbon emission among these industries based on the latest data derived from China’s Input-Output Table and Energy Statistics in 2007. It is found that some industries are “invisible high-carbon” sectors by the definitions of directly-embodied coefficient and perfectly-embodied coefficient and that others have made contributions to carbon leakage by measure of importing and exporting carbon emission volume. Finally, this article provides suggestions to industrial strategies, trade policies and the comprehensive economic management policy in order to effectively achieve energy conservation and emission reduction.

Suggested Citation

  • Qin Changcai & Liu Shulin, 2014. "On Complete Carbon Emission of China’s Industries Based on Input-Output Analysis," Journal of Systems Science and Information, De Gruyter, vol. 2(2), pages 97-110, April.
  • Handle: RePEc:bpj:jossai:v:2:y:2014:i:2:p:97-110:n:1
    DOI: 10.1515/JSSI-2014-0097
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/JSSI-2014-0097
    Download Restriction: no

    File URL: https://libkey.io/10.1515/JSSI-2014-0097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kahrl, Fredrich & Roland-Holst, David, 2008. "Energy and exports in China," China Economic Review, Elsevier, vol. 19(4), pages 649-658, December.
    2. Mongelli, I. & Tassielli, G. & Notarnicola, B., 2006. "Global warming agreements, international trade and energy/carbon embodiments: an input-output approach to the Italian case," Energy Policy, Elsevier, vol. 34(1), pages 88-100, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yingmei & Qi, Jianhong & Chen, Xiaoliang, 2011. "The effect of increasing exports on industrial energy intensity in China," Energy Policy, Elsevier, vol. 39(5), pages 2688-2698, May.
    2. Boglioni, Michele & Zambelli, Stefano, 2018. "Specialization patterns and reduction of CO2 emissions. An empirical investigation of environmental preservation and economic efficiency," Energy Economics, Elsevier, vol. 75(C), pages 134-149.
    3. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    4. Liu, Ying & Jayanthakumaran, Kankesu & Neri, Frank, 2013. "Who is responsible for the CO2 emissions that China produces?," Energy Policy, Elsevier, vol. 62(C), pages 1412-1419.
    5. Andersen, Thomas Barnebeck & Barslund, Mikkel & Hansen, Casper Worm & Harr, Thomas & Jensen, Peter Sandholt, 2014. "How much did China's WTO accession increase economic growth in resource-rich countries?," China Economic Review, Elsevier, vol. 30(C), pages 16-26.
    6. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
    7. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    8. Muhammad, Shahbaz & Lean, Hooi Hooi & Muhammad, Shahbaz Shabbir, 2011. "Environmental Kuznets Curve and the role of energy consumption in Pakistan," MPRA Paper 34929, University Library of Munich, Germany, revised 22 Nov 2011.
    9. Abdelrahim A. M. Yahia & Zhaohua Li & Ebaidalla Mahjoub Ebaidalla & Jun He, 2021. "Exploring the Impact of Exports on Clean Energy Consumption in China: An Empirical Study," Asian Development Policy Review, Asian Economic and Social Society, vol. 9(1), pages 44-56, March.
    10. Yuling Sun & Junsong Jia & Min Ju & Chundi Chen, 2022. "Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically We," Land, MDPI, vol. 11(7), pages 1-26, July.
    11. Yunfeng, Yan & Laike, Yang, 2010. "China's foreign trade and climate change: A case study of CO2 emissions," Energy Policy, Elsevier, vol. 38(1), pages 350-356, January.
    12. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    13. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    14. López, Luis Antonio & Arce, Guadalupe & Zafrilla, Jorge Enrique, 2013. "Parcelling virtual carbon in the pollution haven hypothesis," Energy Economics, Elsevier, vol. 39(C), pages 177-186.
    15. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    16. Zhang, Youguo, 2009. "Structural decomposition analysis of sources of decarbonizing economic development in China; 1992-2006," Ecological Economics, Elsevier, vol. 68(8-9), pages 2399-2405, June.
    17. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    18. Dong, Di & An, Haizhong & Huang, Shupei, 2017. "The transfer of embodied carbon in copper international trade: An industry chain perspective," Resources Policy, Elsevier, vol. 52(C), pages 173-180.
    19. Kurt Kratena & Ina Meyer, 2010. "CO2 Emissions Embodied in Austrian International Trade," WIFO Studies, WIFO, number 39242, April.
    20. Muhammad, Anees & Ishfaq, Ahmed, 2011. "Industrial development, agricultural growth, urbanization and environmental Kuznets curve in Pakistan," MPRA Paper 33469, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:2:y:2014:i:2:p:97-110:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.