IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v9y2021i1p39-77n1.html
   My bibliography  Save this article

Decision-theoretic foundations for statistical causality

Author

Listed:
  • Dawid Philip

    (Statistical Laboratory, University of Cambridge, Cambridge, United Kingdom)

Abstract

We develop a mathematical and interpretative foundation for the enterprise of decision-theoretic (DT) statistical causality, which is a straightforward way of representing and addressing causal questions. DT reframes causal inference as “assisted decision-making” and aims to understand when, and how, I can make use of external data, typically observational, to help me solve a decision problem by taking advantage of assumed relationships between the data and my problem. The relationships embodied in any representation of a causal problem require deeper justification, which is necessarily context-dependent. Here we clarify the considerations needed to support applications of the DT methodology. Exchangeability considerations are used to structure the required relationships, and a distinction drawn between intention to treat and intervention to treat forms the basis for the enabling condition of “ignorability.” We also show how the DT perspective unifies and sheds light on other popular formalisations of statistical causality, including potential responses and directed acyclic graphs.

Suggested Citation

  • Dawid Philip, 2021. "Decision-theoretic foundations for statistical causality," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 39-77, January.
  • Handle: RePEc:bpj:causin:v:9:y:2021:i:1:p:39-77:n:1
    DOI: 10.1515/jci-2020-0008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2020-0008
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2020-0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vanessa Didelez, 2019. "Defining causal mediation with a longitudinal mediator and a survival outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 593-610, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mats J. Stensrud & Jessica G. Young & Torben Martinussen, 2021. "Discussion on “Causal mediation of semicompeting risks” by Yen‐Tsung Huang," Biometrics, The International Biometric Society, vol. 77(4), pages 1160-1164, December.
    2. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    3. Cheng Zheng & Lei Liu, 2022. "Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach," Biometrics, The International Biometric Society, vol. 78(3), pages 1233-1243, September.
    4. Díaz Iván & Williams Nicholas & Rudolph Kara E., 2023. "Efficient and flexible mediation analysis with time-varying mediators, treatments, and confounders," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-17, January.
    5. Ørnulf Borgan & Håkon K. Gjessing, 2019. "Special issue dedicated to Odd O. Aalen," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 587-592, October.
    6. Cai Xiaoxuan & Loh Wen Wei & Crawford Forrest W., 2021. "Identification of causal intervention effects under contagion," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 9-38, January.
    7. Rubino, Claudio & Di Maria, Chiara & Abbruzzo, Antonino & Ferrante, Mauro, 2022. "Socio-economic inequality, interregional mobility and mortality among cancer patients: A mediation analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    8. Kwun Chuen Gary Chan & Fei Gao & Fan Xia, 2021. "Discussion on “Causal mediation of semicompeting risks” by Yen‐Tsung Huang," Biometrics, The International Biometric Society, vol. 77(4), pages 1155-1159, December.
    9. Isabel R. Fulcher & Ilya Shpitser & Vanessa Didelez & Kali Zhou & Daniel O. Scharfstein, 2021. "Discussion on “Causal mediation of semicompeting risks” by Yen‐Tsung Huang," Biometrics, The International Biometric Society, vol. 77(4), pages 1165-1169, December.
    10. Oisín Ryan & Ellen L. Hamaker, 2022. "Time to Intervene: A Continuous-Time Approach to Network Analysis and Centrality," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 214-252, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:9:y:2021:i:1:p:39-77:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.