IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v7y2019i2p13n1.html
   My bibliography  Save this article

A Gaussian Process Framework for Overlap and Causal Effect Estimation with High-Dimensional Covariates

Author

Listed:
  • Ghosh Debashis

    (Department of Biostatistics and Informatics, 144805Colorado School of Public Health, 80045Aurora, CO, United States)

  • Cruz Cortés Efrén

    (Department of Biostatistics and Informatics, 144805Colorado School of Public Health, 80045Aurora, CO, United States)

Abstract

A powerful tool for the analysis of nonrandomized observational studies has been the potential outcomes model. Utilization of this framework allows analysts to estimate average treatment effects. This article considers the situation in which high-dimensional covariates are present and revisits the standard assumptions made in causal inference. We show that by employing a flexible Gaussian process framework, the assumption of strict overlap leads to very restrictive assumptions about the distribution of covariates, results for which can be characterized using classical results from Gaussian random measures as well as reproducing kernel Hilbert space theory. In addition, we propose a strategy for data-adaptive causal effect estimation that does not rely on the strict overlap assumption. These findings reveal under a focused framework the stringency that accompanies the use of the treatment positivity assumption in high-dimensional settings.

Suggested Citation

  • Ghosh Debashis & Cruz Cortés Efrén, 2019. "A Gaussian Process Framework for Overlap and Causal Effect Estimation with High-Dimensional Covariates," Journal of Causal Inference, De Gruyter, vol. 7(2), pages 1-13, September.
  • Handle: RePEc:bpj:causin:v:7:y:2019:i:2:p:13:n:1
    DOI: 10.1515/jci-2018-0024
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2018-0024
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2018-0024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    3. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    2. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    3. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    4. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    5. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    6. Jason Poulos & Shuxi Zeng, 2021. "RNN‐based counterfactual prediction, with an application to homestead policy and public schooling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1124-1139, August.
    7. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    8. Rahul Singh & Liyang Sun, 2024. "Double robustness for complier parameters and a semi-parametric test for complier characteristics," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 1-20.
    9. Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024. "Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations," Journal of Econometrics, Elsevier, vol. 240(2).
    10. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    11. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    14. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    15. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    16. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    17. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    18. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    20. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:7:y:2019:i:2:p:13:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.