IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v10y2022i1p480-493n1.html
   My bibliography  Save this article

Individualized treatment rules under stochastic treatment cost constraints

Author

Listed:
  • Qiu Hongxiang

    (Department of Statistics, the Wharton School, University of Pennsylvania, Philadelphia, PA 19104, United States)

  • Carone Marco

    (Department of Biostatistics, University of Washington, Seattle, Washington, United States)

  • Luedtke Alex

    (Department of Statistics, University of Washington, Seattle, Washington, United States)

Abstract

Estimation and evaluation of individualized treatment rules have been studied extensively, but real-world treatment resource constraints have received limited attention in existing methods. We investigate a setting in which treatment is intervened upon based on covariates to optimize the mean counterfactual outcome under treatment cost constraints when the treatment cost is random. In a particularly interesting special case, an instrumental variable corresponding to encouragement to treatment is intervened upon with constraints on the proportion receiving treatment. For such settings, we first develop a method to estimate optimal individualized treatment rules. We further construct an asymptotically efficient plug-in estimator of the corresponding average treatment effect relative to a given reference rule.

Suggested Citation

  • Qiu Hongxiang & Carone Marco & Luedtke Alex, 2022. "Individualized treatment rules under stochastic treatment cost constraints," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 480-493, January.
  • Handle: RePEc:bpj:causin:v:10:y:2022:i:1:p:480-493:n:1
    DOI: 10.1515/jci-2022-0005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2022-0005
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2022-0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongxiang Qiu & Marco Carone & Ekaterina Sadikova & Maria Petukhova & Ronald C. Kessler & Alex Luedtke, 2021. "Optimal Individualized Decision Rules Using Instrumental Variable Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 174-191, March.
    2. Hongxiang Qiu & Marco Carone & Ekaterina Sadikova & Maria Petukhova & Ronald C. Kessler & Alex Luedtke, 2021. "Rejoinder: Optimal Individualized Decision Rules Using Instrumental Variable Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 207-209, March.
    3. Liyang Sun, 2021. "Empirical Welfare Maximization with Constraints," Papers 2103.15298, arXiv.org, revised Sep 2024.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Ngo & Keegan Harris & Anish Agarwal & Vasilis Syrgkanis & Zhiwei Steven Wu, 2023. "Incentive-Aware Synthetic Control: Accurate Counterfactual Estimation via Incentivized Exploration," Papers 2312.16307, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    2. Ashesh Rambachan & Amanda Coston & Edward Kennedy, 2022. "Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding," Papers 2212.09844, arXiv.org, revised May 2024.
    3. Zhou, Yunzhe & Qi, Zhengling & Shi, Chengchun & Li, Lexin, 2023. "Optimizing pessimism in dynamic treatment regimes: a Bayesian learning approach," LSE Research Online Documents on Economics 118233, London School of Economics and Political Science, LSE Library.
    4. Cui, Yifan & Tchetgen Tchetgen, Eric, 2021. "On a necessary and sufficient identification condition of optimal treatment regimes with an instrumental variable," Statistics & Probability Letters, Elsevier, vol. 178(C).
    5. Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
    6. Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
    7. Alejandro Sanchez-Becerra, 2023. "Robust inference for the treatment effect variance in experiments using machine learning," Papers 2306.03363, arXiv.org.
    8. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    9. Daniel F. Pellatt, 2022. "PAC-Bayesian Treatment Allocation Under Budget Constraints," Papers 2212.09007, arXiv.org, revised Jun 2023.
    10. Susan Athey & Undral Byambadalai & Vitor Hadad & Sanath Kumar Krishnamurthy & Weiwen Leung & Joseph Jay Williams, 2022. "Contextual Bandits in a Survey Experiment on Charitable Giving: Within-Experiment Outcomes versus Policy Learning," Papers 2211.12004, arXiv.org.
    11. Kirill Ponomarev & Vira Semenova, 2024. "On the Lower Confidence Band for the Optimal Welfare," Papers 2410.07443, arXiv.org, revised Oct 2024.
    12. Riccardo D'Adamo, 2021. "Orthogonal Policy Learning Under Ambiguity," Papers 2111.10904, arXiv.org, revised Dec 2022.
    13. Toru Kitagawa & Guanyi Wang, 2023. "Individualized Treatment Allocation in Sequential Network Games," Papers 2302.05747, arXiv.org, revised Jul 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:10:y:2022:i:1:p:480-493:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.