IDEAS home Printed from https://ideas.repec.org/a/bpj/bejeap/v15y2015i1p23n9.html
   My bibliography  Save this article

Predicting Recidivism of Juvenile Offenders

Author

Listed:
  • Kalist David E.

    (Department of Economics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, USA)

  • Lee Daniel Y.

    (Department of Economics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, USA)

  • Spurr Stephen J.

    (Department of Economics, Wayne State University, Detroit, MI, USA)

Abstract

This study uses a large data set to analyze and predict recidivism of juvenile offenders in Pennsylvania. We employ a split-population duration model to determine the effect of covariates on (1) the probability of failure, defined as a second referral to juvenile court, and (2) the time to failure, given that it occurs. A test of the predictive power of our estimates finds a false positive rate of 18.5% and a false negative rate of 20.7%, which compares favorably to the performance of other models in the literature.

Suggested Citation

  • Kalist David E. & Lee Daniel Y. & Spurr Stephen J., 2015. "Predicting Recidivism of Juvenile Offenders," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 15(1), pages 329-351, January.
  • Handle: RePEc:bpj:bejeap:v:15:y:2015:i:1:p:23:n:9
    DOI: 10.1515/bejeap-2013-0188
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/bejeap-2013-0188
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/bejeap-2013-0188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Berk & Lawrence Sherman & Geoffrey Barnes & Ellen Kurtz & Lindsay Ahlman, 2009. "Forecasting murder within a population of probationers and parolees: a high stakes application of statistical learning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 191-211, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhatt, Monica & Heller, Sara & Kapustin, Max & Bertrand, Marianne & Blattman, Christopher, 2023. "Predicting and Preventing Gun Violence: An Experimental Evaluation of READI Chicago," SocArXiv dks29, Center for Open Science.
    2. Valasik, Matthew, 2018. "Gang violence predictability: Using risk terrain modeling to study gang homicides and gang assaults in East Los Angeles," Journal of Criminal Justice, Elsevier, vol. 58(C), pages 10-21.
    3. Vahlne, Niklas, 2017. "On LPG usage in rural Vietnamese households," Development Engineering, Elsevier, vol. 2(C), pages 1-11.
    4. Oleksandr Korystin & Yuriy Kardashevskyy & Vitalii Baskov, 2024. "Risk Assessment Of Economic Organised Crime In Ukraine," Baltic Journal of Economic Studies, Publishing house "Baltija Publishing", vol. 10(1).
    5. Richard A. Berk & Susan B. Sorenson & Geoffrey Barnes, 2016. "Forecasting Domestic Violence: A Machine Learning Approach to Help Inform Arraignment Decisions," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 13(1), pages 94-115, March.
    6. Guido Vittorio Travaini & Federico Pacchioni & Silvia Bellumore & Marta Bosia & Francesco De Micco, 2022. "Machine Learning and Criminal Justice: A Systematic Review of Advanced Methodology for Recidivism Risk Prediction," IJERPH, MDPI, vol. 19(17), pages 1-13, August.
    7. Jiaming Zeng & Berk Ustun & Cynthia Rudin, 2017. "Interpretable classification models for recidivism prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 689-722, June.
    8. Kigerl, Alex & Hamilton, Zachary & Kowalski, Melissa & Mei, Xiaohan, 2022. "The great methods bake-off: Comparing performance of machine learning algorithms," Journal of Criminal Justice, Elsevier, vol. 82(C).
    9. Paul Seed, 2010. "The use of cost information when defining critical values for prediction of rare events by using logistic regression and similar methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 255-256, January.
    10. Ciner, Cetin, 2019. "Do industry returns predict the stock market? A reprise using the random forest," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 152-158.
    11. Brendan O'Flaherty & Rajiv Sethi & Morgan Williams, 2024. "The nature, detection, and avoidance of harmful discrimination in criminal justice," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 43(1), pages 289-320, January.
    12. Sharad Goel & Justin M. Rao & Ravi Shroff, 2016. "Personalized Risk Assessments in the Criminal Justice System," American Economic Review, American Economic Association, vol. 106(5), pages 119-123, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:bejeap:v:15:y:2015:i:1:p:23:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.