IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v173y2010i1p255-256.html
   My bibliography  Save this article

The use of cost information when defining critical values for prediction of rare events by using logistic regression and similar methods

Author

Listed:
  • Paul Seed

Abstract

No abstract is available for this item.

Suggested Citation

  • Paul Seed, 2010. "The use of cost information when defining critical values for prediction of rare events by using logistic regression and similar methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 255-256, January.
  • Handle: RePEc:bla:jorssa:v:173:y:2010:i:1:p:255-256
    DOI: 10.1111/j.1467-985X.2009.00622_1.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2009.00622_1.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2009.00622_1.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Berk & Lawrence Sherman & Geoffrey Barnes & Ellen Kurtz & Lindsay Ahlman, 2009. "Forecasting murder within a population of probationers and parolees: a high stakes application of statistical learning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 191-211, January.
    2. Zhiqiang Wang, 2000. "Model selection using the Akaike information criterion," Stata Technical Bulletin, StataCorp LP, vol. 9(54).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhatt, Monica & Heller, Sara & Kapustin, Max & Bertrand, Marianne & Blattman, Christopher, 2023. "Predicting and Preventing Gun Violence: An Experimental Evaluation of READI Chicago," SocArXiv dks29, Center for Open Science.
    2. Valasik, Matthew, 2018. "Gang violence predictability: Using risk terrain modeling to study gang homicides and gang assaults in East Los Angeles," Journal of Criminal Justice, Elsevier, vol. 58(C), pages 10-21.
    3. Vahlne, Niklas, 2017. "On LPG usage in rural Vietnamese households," Development Engineering, Elsevier, vol. 2(C), pages 1-11.
    4. Amin Moniri-Morad & Mohammad Pourgol-Mohammad & Hamid Aghababaei & Javad Sattarvand, 2019. "Reliability-based covariate analysis for complex systems in heterogeneous environment: Case study of mining equipment," Journal of Risk and Reliability, , vol. 233(4), pages 593-604, August.
    5. Oleksandr Korystin & Yuriy Kardashevskyy & Vitalii Baskov, 2024. "Risk Assessment Of Economic Organised Crime In Ukraine," Baltic Journal of Economic Studies, Publishing house "Baltija Publishing", vol. 10(1).
    6. Richard A. Berk & Susan B. Sorenson & Geoffrey Barnes, 2016. "Forecasting Domestic Violence: A Machine Learning Approach to Help Inform Arraignment Decisions," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 13(1), pages 94-115, March.
    7. Guido Vittorio Travaini & Federico Pacchioni & Silvia Bellumore & Marta Bosia & Francesco De Micco, 2022. "Machine Learning and Criminal Justice: A Systematic Review of Advanced Methodology for Recidivism Risk Prediction," IJERPH, MDPI, vol. 19(17), pages 1-13, August.
    8. An Hoai Duong & Ernoiz Antriyandarti, 2023. "The Willingness to get Vaccinated Against SARS-CoV-2 Virus among Southeast Asian Countries: Does the Vaccine Brand Matter?," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 18(2), pages 765-793, April.
    9. Jiaming Zeng & Berk Ustun & Cynthia Rudin, 2017. "Interpretable classification models for recidivism prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 689-722, June.
    10. Kigerl, Alex & Hamilton, Zachary & Kowalski, Melissa & Mei, Xiaohan, 2022. "The great methods bake-off: Comparing performance of machine learning algorithms," Journal of Criminal Justice, Elsevier, vol. 82(C).
    11. Ciner, Cetin, 2019. "Do industry returns predict the stock market? A reprise using the random forest," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 152-158.
    12. Brendan O'Flaherty & Rajiv Sethi & Morgan Williams, 2024. "The nature, detection, and avoidance of harmful discrimination in criminal justice," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 43(1), pages 289-320, January.
    13. Kalist David E. & Lee Daniel Y. & Spurr Stephen J., 2015. "Predicting Recidivism of Juvenile Offenders," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 15(1), pages 329-351, January.
    14. Sharad Goel & Justin M. Rao & Ravi Shroff, 2016. "Personalized Risk Assessments in the Criminal Justice System," American Economic Review, American Economic Association, vol. 106(5), pages 119-123, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:173:y:2010:i:1:p:255-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.