IDEAS home Printed from https://ideas.repec.org/a/bpj/apjrin/v3y2009i2n1.html
   My bibliography  Save this article

A Bayesian Comparison of Models for Changing Mortalities toward Evaluating Longevity Risk in Japan

Author

Listed:
  • Kogure Atsuyuki

    (Keio University, Japan)

  • Kitsukawa Kenji

    (Daiwa Securities SMBC, Japan)

  • Kurachi Yoshiyuki

    (University of Tokyo, Japan)

Abstract

We present a Bayesian approach to compare models for forecasting mortality rates under the framework of the Lee-Carter methodology. We consider the original normal log-bilinear formulation of the methodology as well as the recently proposed Poisson log-bilinear formulation. For each formulation, we compare three models: the deterministic trend model, the stochastic trend model and the stationary (no trend) model, each of which represents a different future scenario for changing mortalities. Markov-chain Monte Carlo methods are used to sample the predictive distributions from each model and to calculate the marginal likelihoods for the model selection. The approach is applied to Japanese male mortality rates from 1970 to 2003. The results show that the stochastic trend model is most appropriate for forecasting mortality rates both for the normal and the Poisson formulation. We then use the selected model to evaluate longevity risk in Japan by calculating the posterior predictive distributions of the life annuities for the population at age 65.

Suggested Citation

  • Kogure Atsuyuki & Kitsukawa Kenji & Kurachi Yoshiyuki, 2009. "A Bayesian Comparison of Models for Changing Mortalities toward Evaluating Longevity Risk in Japan," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 3(2), pages 1-22, April.
  • Handle: RePEc:bpj:apjrin:v:3:y:2009:i:2:n:1
    DOI: 10.2202/2153-3792.1036
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/2153-3792.1036
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/2153-3792.1036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Czado, Claudia & Delwarde, Antoine & Denuit, Michel, 2005. "Bayesian Poisson log-bilinear mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 260-284, June.
    2. Olivieri, Annamaria, 2001. "Uncertainty in mortality projections: an actuarial perspective," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 231-245, October.
    3. David Scollnik, 2001. "Actuarial Modeling with MCMC and BUGs," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(2), pages 96-124.
    4. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Lu & Katja Hanewald & Xiaojun Wang, 2021. "Subnational Mortality Modelling: A Bayesian Hierarchical Model with Common Factors," Risks, MDPI, vol. 9(11), pages 1-21, November.
    2. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    3. Selin Ozen & c{S}ule c{S}ahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Papers 2101.06690, arXiv.org.
    4. Li, Hong & De Waegenaere, Anja & Melenberg, Bertrand, 2015. "The choice of sample size for mortality forecasting: A Bayesian learning approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 153-168.
    5. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
    6. Schinzinger, Edo & Denuit, Michel M. & Christiansen, Marcus C., 2016. "A multivariate evolutionary credibility model for mortality improvement rates," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 70-81.
    7. Yang, Bowen & Li, Jackie & Balasooriya, Uditha, 2015. "Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 16-27.
    8. Leung, Melvern & Fung, Man Chung & O’Hare, Colin, 2018. "A comparative study of pricing approaches for longevity instruments," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 95-116.
    9. Jackie Li & Atsuyuki Kogure, 2021. "Bayesian Mixture Modelling for Mortality Projection," Risks, MDPI, vol. 9(4), pages 1-12, April.
    10. Jackie Li & Atsuyuki Kogure & Jia Liu, 2019. "Multivariate Risk-Neutral Pricing of Reverse Mortgages under the Bayesian Framework," Risks, MDPI, vol. 7(1), pages 1-12, January.
    11. Selin Özen & Şule Şahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Risks, MDPI, vol. 9(2), pages 1-19, February.
    12. Kogure, Atsuyuki & Kurachi, Yoshiyuki, 2010. "A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 162-172, February.
    13. Jackie Li, 2014. "An application of MCMC simulation in mortality projection for populations with limited data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(1), pages 1-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    2. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    4. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    5. Michel Denuit, 2009. "Life Anuities with Stochastic Survival Probabilities: A Review," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 463-489, September.
    6. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    7. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
    8. Ralph Stevens, 2017. "Managing Longevity Risk by Implementing Sustainable Full Retirement Age Policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(4), pages 1203-1230, December.
    9. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    10. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Longevity risk in portfolios of pension annuities," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 505-519, April.
    11. Christiansen, Marcus C., 2008. "A sensitivity analysis concept for life insurance with respect to a valuation basis of infinite dimension," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 680-690, April.
    12. Daniel dos Santos Baptista & Nuno M. Brites, 2023. "Modelling French and Portuguese Mortality Rates with Stochastic Differential Equation Models: A Comparative Study," Mathematics, MDPI, vol. 11(22), pages 1-20, November.
    13. Hainaut, Donatien, 2012. "Multidimensional Lee–Carter model with switching mortality processes," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 236-246.
    14. Yang, Sharon S. & Wang, Chou-Wen, 2013. "Pricing and securitization of multi-country longevity risk with mortality dependence," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 157-169.
    15. Johann Fuchs & Doris Söhnlein & Brigitte Weber & Enzo Weber, 2018. "Stochastic Forecasting of Labor Supply and Population: An Integrated Model," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(1), pages 33-58, February.
    16. Ungolo, Francesco & Kleinow, Torsten & Macdonald, Angus S., 2020. "A hierarchical model for the joint mortality analysis of pension scheme data with missing covariates," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 68-84.
    17. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    18. Blake, David & Dowd, Kevin & Cairns, Andrew J.G., 2008. "Longevity risk and the Grim Reaper's toxic tail: The survivor fan charts," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1062-1066, June.
    19. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    20. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:apjrin:v:3:y:2009:i:2:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.