IDEAS home Printed from https://ideas.repec.org/a/blg/reveco/v76y2024i4p132-139.html
   My bibliography  Save this article

Analysis Of The Impact Of Covid-19 On Key Demographic Indicators In Romania And Moldova Using Econometric Modeling

Author

Listed:
  • PARTACHI Ion

    (Academy of Economic Studies of Moldova (University))

  • MIJA Simion

    (Academy of Economic Studies of Moldova (University))

  • HERTELIU Claudiu

    (Bucharest University of Economic Studies)

Abstract

The complexity of the impact of the COVID-19 pandemic crisis remains a challenging subject to define and estimate. In this paper, we will reflect on the impact from the perspective of demographic indicators, considering how the crisis has affected family well-being, especially in relation to dependence on remittances. We will also address the problematic aspects caused by the crisis on social and economic mobility, as well as the perception of state responses to the pandemic, from a comparative perspective. This includes examining the support interventions provided to families, the public policy measures adopted, and the responses of public health systems in Moldova and Romania. Econometric analysis of these effects offers a detailed understanding of how COVID-19 has influenced demographic dynamics in both countries, facilitating the development of policies better suited to the post-pandemic context.

Suggested Citation

  • PARTACHI Ion & MIJA Simion & HERTELIU Claudiu, 2024. "Analysis Of The Impact Of Covid-19 On Key Demographic Indicators In Romania And Moldova Using Econometric Modeling," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 76(4), pages 132-139, December.
  • Handle: RePEc:blg:reveco:v:76:y:2024:i:4:p:132-139
    DOI: 10.56043/reveco-2024-0038
    as

    Download full text from publisher

    File URL: http://economice.ulbsibiu.ro/revista.economica/archive/76408partachi&mija&herteliu.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.56043/reveco-2024-0038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    2. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    3. James H. Stock & Mark W. Watson, 1988. "A Probability Model of The Coincident Economic Indicators," NBER Working Papers 2772, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Rusnak & Tomas Havranek & Roman Horvath, 2013. "How to Solve the Price Puzzle? A Meta-Analysis," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(1), pages 37-70, February.
    2. Dan S. Rickman, 2010. "Modern Macroeconomics And Regional Economic Modeling," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 23-41, February.
    3. Carlo Altavilla & Matteo Ciccarelli, 2006. "Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro Area," Discussion Papers 7_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
    4. Gächter, Martin & Huber, Florian & Meier, Martin, 2022. "A shot for the US economy," Finance Research Letters, Elsevier, vol. 47(PA).
    5. Pintor, Gabor, 2016. "The macroeconomic shock with the highest price of risk," LSE Research Online Documents on Economics 86225, London School of Economics and Political Science, LSE Library.
    6. Auer, Simone, 2019. "Monetary policy shocks and foreign investment income: Evidence from a large Bayesian VAR," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 142-166.
    7. David Mortimer Krainz, 2011. "An Evaluation of the Forecasting Performance of Three Econometric Models for the Eurozone and the USA," WIFO Working Papers 399, WIFO.
    8. Stelios D. Bekiros & Alessia Paccagnini, 2016. "Policy‐Oriented Macroeconomic Forecasting with Hybrid DGSE and Time‐Varying Parameter VAR Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 613-632, November.
    9. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    10. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
    11. Imran H. Shah & Ian Corrick & Abdul Saboor, 2018. "How should Central Banks Respond to Non-neutral Inflation Expectations?," Open Economies Review, Springer, vol. 29(2), pages 321-351, April.
    12. Francisco J. Goerlich-Gisbert, 1999. "Shocks agregados versus shocks sectoriales. Un análisis factorial dinámico," Investigaciones Economicas, Fundación SEPI, vol. 23(1), pages 27-53, January.
    13. Bekiros, Stelios, 2014. "Forecasting with a state space time-varying parameter VAR model: Evidence from the Euro area," Economic Modelling, Elsevier, vol. 38(C), pages 619-626.
    14. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    15. Alessia Paccagnini, 2017. "Forecasting with FAVAR: macroeconomic versus financial factors," NBP Working Papers 256, Narodowy Bank Polski.
    16. Altavilla, Carlo & Ciccarelli, Matteo, 2010. "Evaluating the effect of monetary policy on unemployment with alternative inflation forecasts," Economic Modelling, Elsevier, vol. 27(1), pages 237-253, January.
    17. Vinodh Madhavan & Partha Ray, 2019. "Price and Volatility Linkages Between Indian Stocks and Their European GDRs," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 18(2_suppl), pages 213-237, August.
    18. Caruso, Alberto & Reichlin, Lucrezia & Ricco, Giovanni, 2019. "Financial and fiscal interaction in the Euro Area crisis: This time was different," European Economic Review, Elsevier, vol. 119(C), pages 333-355.
    19. Arturo Estrella & Anthony P. Rodrigues, 1998. "Consistent covariance matrix estimation in probit models with autocorrelated errors," Staff Reports 39, Federal Reserve Bank of New York.
    20. Thomas Sargent & Noah Williams & Tao Zha, 2006. "Shocks and Government Beliefs: The Rise and Fall of American Inflation," American Economic Review, American Economic Association, vol. 96(4), pages 1193-1224, September.

    More about this item

    Keywords

    econometric analysis; demographic dynamics; COVID-19;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:blg:reveco:v:76:y:2024:i:4:p:132-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eduard Alexandru Stoica (email available below). General contact details of provider: https://edirc.repec.org/data/feulbro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.