IDEAS home Printed from https://ideas.repec.org/a/blg/journl/v8y2013i1p104-114.html
   My bibliography  Save this article

Bankruptcy Prediction By Using Support Vector Machines And Genetic Algorithms

Author

Listed:
  • Salehi Mahdi

    (Ferdowsi University of Mashhad, Iran)

  • Rostami Neda

    (Islamic Azad University Science and Research Khorasan-e-Razavi Brancha)

Abstract

The original purpose of this study is comparing of Support Vector Machine and Genetic Algorithm and impact of financial ratios on accuracy of bankruptcy prediction. In according to some limitations in traditional statistical models, we used two models of Support Vector Machine and Genetic Algorithm. One of findings in this research is impact of financial ratios on accuracy of bankruptcy predicting and it shows that improper selection of financial ratios do not have high resolutions. Besides, they can decreases accuracy of prediction and may wrong introduce results of the research. Moreover, Support Vector Machine was more powerful than Genetic Algorithm in year’s t. However, it cannot be introduced which of them is better. Identifying of the most effective financial ratios as predictor variables and create a more powerful models, which can improve accuracy of prediction and reduce bankruptcy risk and its heavy cost will be decreased. This research focuses on identifying the most effective ¬financial ratios and the most powerful model for predicting of ¬bankruptcy.

Suggested Citation

  • Salehi Mahdi & Rostami Neda, 2013. "Bankruptcy Prediction By Using Support Vector Machines And Genetic Algorithms," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 8(1), pages 104-114, April.
  • Handle: RePEc:blg:journl:v:8:y:2013:i:1:p:104-114
    as

    Download full text from publisher

    File URL: http://eccsf.ulbsibiu.ro/RePEc/blg/journl/8111salehi&rostami.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
    2. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    3. Blum, M, 1974. "Failing Company Discriminant-Analysis," Journal of Accounting Research, Wiley Blackwell, vol. 12(1), pages 1-25.
    4. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    5. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    6. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    2. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    3. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    4. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    5. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    6. repec:ctc:sdimse:dime21_01 is not listed on IDEAS
    7. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    8. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.
    9. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
    10. Psillaki, Maria & Tsolas, Ioannis E. & Margaritis, Dimitris, 2010. "Evaluation of credit risk based on firm performance," European Journal of Operational Research, Elsevier, vol. 201(3), pages 873-881, March.
    11. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    12. Antonio David Somoza Lopez & Josep Vallverdu Calafell, 2003. "Una comparacion de la seleccion de los ratios contables en los modelos contable-financieros de prediccion de la insolvencia empresarial," Working Papers in Economics 94, Universitat de Barcelona. Espai de Recerca en Economia.
    13. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    14. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    15. Bhanu Pratap SINGH & Alok Kumar MISHRA, 2019. "Sensitivity of bankruptcy prediction models to the change in econometric methods," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(620), A), pages 71-86, Autumn.
    16. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    17. Lin, Fengyi & Yeh, Ching Chiang & Lee, Meng Yuan, 2013. "A Hybrid Business Failure Prediction Model Using Locally Linear Embedding And Support Vector Machines," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 82-97, March.
    18. Lillian Cheung & Amnon Levy, 1998. "An integrative analysis of business bankruptcy in Australia," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 22(2), pages 149-167, June.
    19. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    20. Catherine Refait, 2004. "La prévision de la faillite fondée sur l’analyse financière de l’entreprise : un état des lieux," Économie et Prévision, Programme National Persée, vol. 162(1), pages 129-147.
    21. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:blg:journl:v:8:y:2013:i:1:p:104-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mihaela Herciu (email available below). General contact details of provider: https://edirc.repec.org/data/feulbro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.